These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22291636)

  • 1. Meeting the memory challenges of brain-scale network simulation.
    Kunkel S; Potjans TC; Eppler JM; Plesser HE; Morrison A; Diesmann M
    Front Neuroinform; 2011; 5():35. PubMed ID: 22291636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercomputers ready for use as discovery machines for neuroscience.
    Helias M; Kunkel S; Masumoto G; Igarashi J; Eppler JM; Ishii S; Fukai T; Morrison A; Diesmann M
    Front Neuroinform; 2012; 6():26. PubMed ID: 23129998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiking network simulation code for petascale computers.
    Kunkel S; Schmidt M; Eppler JM; Plesser HE; Masumoto G; Igarashi J; Ishii S; Fukai T; Morrison A; Diesmann M; Helias M
    Front Neuroinform; 2014; 8():78. PubMed ID: 25346682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing Neuronal Network Models in Massively Parallel Environments.
    Ippen T; Eppler JM; Plesser HE; Diesmann M
    Front Neuroinform; 2017; 11():30. PubMed ID: 28559808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
    Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S
    Front Neuroinform; 2018; 12():2. PubMed ID: 29503613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions.
    Jordan J; Helias M; Diesmann M; Kunkel S
    Front Neuroinform; 2020; 14():12. PubMed ID: 32431602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks.
    Trensch G; Morrison A
    Front Neuroinform; 2022; 16():884033. PubMed ID: 35846779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational approach towards the microscale mouse brain connectome from the mesoscale.
    Zhang T; Zeng Y; Xu B
    J Integr Neurosci; 2017; 16(3):291-306. PubMed ID: 28891515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster.
    Tiddia G; Golosio B; Albers J; Senk J; Simula F; Pronold J; Fanti V; Pastorelli E; Paolucci PS; van Albada SJ
    Front Neuroinform; 2022; 16():883333. PubMed ID: 35859800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.
    Pesce LL; Lee HC; Hereld M; Visser S; Stevens RL; Wildeman A; van Drongelen W
    Comput Math Methods Med; 2013; 2013():182145. PubMed ID: 24416069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Modular Structure of the
    Kunin AB; Guo J; Bassler KE; Pitkow X; Josić K
    J Neurosci; 2023 Sep; 43(37):6384-6400. PubMed ID: 37591738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
    Schmitt FJ; Rostami V; Nawrot MP
    Front Neuroinform; 2023; 17():941696. PubMed ID: 36844916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.
    Kunkel S; Schenck W
    Front Neuroinform; 2017; 11():40. PubMed ID: 28701946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.
    Hahne J; Helias M; Kunkel S; Igarashi J; Bolten M; Frommer A; Diesmann M
    Front Neuroinform; 2015; 9():22. PubMed ID: 26441628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.