These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22291647)

  • 1. The energy demand of fast neuronal network oscillations: insights from brain slice preparations.
    Kann O
    Front Pharmacol; 2011; 2():90. PubMed ID: 22291647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria.
    Kann O; Huchzermeyer C; Kovács R; Wirtz S; Schuelke M
    Brain; 2011 Feb; 134(Pt 2):345-58. PubMed ID: 21183487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reliable model for gamma oscillations in hippocampal tissue.
    Schneider J; Lewen A; Ta TT; Galow LV; Isola R; Papageorgiou IE; Kann O
    J Neurosci Res; 2015 Jul; 93(7):1067-78. PubMed ID: 25808046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy substrates that fuel fast neuronal network oscillations.
    Galow LV; Schneider J; Lewen A; Ta TT; Papageorgiou IE; Kann O
    Front Neurosci; 2014; 8():398. PubMed ID: 25538552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy and Potassium Ion Homeostasis during Gamma Oscillations.
    Kann O; Hollnagel JO; Elzoheiry S; Schneider J
    Front Mol Neurosci; 2016; 9():47. PubMed ID: 27378847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue.
    Lewen A; Ta TT; Cesetti T; Hollnagel JO; Papageorgiou IE; Chausse B; Kann O
    J Neurosci Res; 2020 Oct; 98(10):1953-1967. PubMed ID: 32638411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic modulation of neuronal gamma-band oscillations.
    Vodovozov W; Schneider J; Elzoheiry S; Hollnagel JO; Lewen A; Kann O
    Pflugers Arch; 2018 Sep; 470(9):1377-1389. PubMed ID: 29808353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations.
    Elzoheiry S; Lewen A; Schneider J; Both M; Hefter D; Boffi JC; Hollnagel JO; Kann O
    J Cereb Blood Flow Metab; 2020 Dec; 40(12):2401-2415. PubMed ID: 31842665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R; Johnston A; Fisahn A
    PLoS One; 2012; 7(7):e40906. PubMed ID: 22815864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histamine H3 receptor activation decreases kainate-induced hippocampal gamma oscillations in vitro by action potential desynchronization in pyramidal neurons.
    Andersson R; Lindskog M; Fisahn A
    J Physiol; 2010 Apr; 588(Pt 8):1241-9. PubMed ID: 20156850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human cerebrospinal fluid promotes spontaneous gamma oscillations in the hippocampus in vitro.
    Bjorefeldt A; Roshan F; Forsberg M; Zetterberg H; Hanse E; Fisahn A
    Hippocampus; 2020 Feb; 30(2):101-113. PubMed ID: 31313871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ.
    Dikmen HO; Hemmerich M; Lewen A; Hollnagel JO; Chausse B; Kann O
    J Neuroinflammation; 2020 Aug; 17(1):235. PubMed ID: 32782006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Kv3.1/Kv3.2 promotes gamma oscillations by rescuing Aβ-induced desynchronization of fast-spiking interneuron firing in an AD mouse model in vitro.
    Andrade-Talavera Y; Arroyo-García LE; Chen G; Johansson J; Fisahn A
    J Physiol; 2020 Sep; 598(17):3711-3725. PubMed ID: 32638407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices.
    Wang K; Zheng C; Wu C; Gao M; Liu Q; Yang K; Ellsworth K; Xu L; Wu J
    Neurosci Lett; 2008 Aug; 441(1):66-71. PubMed ID: 18597935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the synchronization of hippocampal neural network in response to acute nicotine exposure.
    Akkurt D; Akay YM; Akay M
    J Neuroeng Rehabil; 2010 Jul; 7():31. PubMed ID: 20626893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures.
    Fischer Y; Wittner L; Freund TF; Gähwiler BH
    J Physiol; 2002 Mar; 539(Pt 3):857-68. PubMed ID: 11897855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool.
    Fisahn A
    J Physiol; 2005 Jan; 562(Pt 1):65-72. PubMed ID: 15513934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.
    Compte A; Reig R; Descalzo VF; Harvey MA; Puccini GD; Sanchez-Vives MV
    J Neurosci; 2008 Dec; 28(51):13828-44. PubMed ID: 19091973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.
    Oke OO; Magony A; Anver H; Ward PD; Jiruska P; Jefferys JG; Vreugdenhil M
    Eur J Neurosci; 2010 Apr; 31(8):1435-45. PubMed ID: 20384769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subregional differences in the generation of fast network oscillations in the rat medial prefrontal cortex (mPFC) in vitro.
    Glykos V; Whittington MA; LeBeau FE
    J Physiol; 2015 Aug; 593(16):3597-615. PubMed ID: 26041504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.