These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2229183)

  • 41. Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis.
    Buettner HM
    Cell Motil Cytoskeleton; 1995; 32(3):187-204. PubMed ID: 8581975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic buckling of actin within filopodia.
    Leijnse N; Oddershede LB; Bendix PM
    Commun Integr Biol; 2015; 8(2):e1022010. PubMed ID: 26479403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons.
    Liu CW; Lee G; Jay DG
    Cell Motil Cytoskeleton; 1999; 43(3):232-42. PubMed ID: 10401579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pioneer growth cone steering along a series of neuronal and non-neuronal cues of different affinities.
    Caudy M; Bentley D
    J Neurosci; 1986 Jun; 6(6):1781-95. PubMed ID: 3712010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pioneer growth cone steering decisions mediated by single filopodial contacts in situ.
    O'Connor TP; Duerr JS; Bentley D
    J Neurosci; 1990 Dec; 10(12):3935-46. PubMed ID: 2269892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Roles of actin filaments and three second-messenger systems in short-term regulation of chick dorsal root ganglion neurite outgrowth.
    Lankford KL; Letourneau PC
    Cell Motil Cytoskeleton; 1991; 20(1):7-29. PubMed ID: 1661642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM; Robles E; Poo M; Spitzer NC
    Science; 2001 Mar; 291(5510):1983-7. PubMed ID: 11239161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chick wing innervation. II. Morphology of motor and sensory axons and their growth cones during early development.
    Hollyday M; Morgan-Carr M
    J Comp Neurol; 1995 Jun; 357(2):254-71. PubMed ID: 7665728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells.
    Cramer LP
    Front Biosci; 1997 Jun; 2():d260-70. PubMed ID: 9206973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micropruning: the mechanism of turning of Aplysia growth cones at substrate borders in vitro.
    Burmeister DW; Goldberg DJ
    J Neurosci; 1988 Sep; 8(9):3151-9. PubMed ID: 3171672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons.
    Hyland C; Mertz AF; Forscher P; Dufresne E
    Sci Rep; 2014 May; 4():4961. PubMed ID: 24825441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of growth cone morphology by nerve growth factor: a comparative study by scanning electron microscopy.
    Connolly JL; Seeley PJ; Greene LA
    J Neurosci Res; 1985; 13(1-2):183-98. PubMed ID: 3973931
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The expression of cell adhesion molecules on the growth cones of chick cutaneous and muscle sensory neurons.
    Honig MG; Kueter J
    Dev Biol; 1995 Feb; 167(2):563-83. PubMed ID: 7875379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Helical buckling of actin inside filopodia generates traction.
    Leijnse N; Oddershede LB; Bendix PM
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):136-41. PubMed ID: 25535347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensory neurite growth cone guidance by substrate adsorbed nerve growth factor.
    Gundersen RW
    J Neurosci Res; 1985; 13(1-2):199-212. PubMed ID: 3973932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility.
    Berg JS; Cheney RE
    Nat Cell Biol; 2002 Mar; 4(3):246-50. PubMed ID: 11854753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip.
    Bornschlögl T; Romero S; Vestergaard CL; Joanny JF; Van Nhieu GT; Bassereau P
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18928-33. PubMed ID: 24198333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones.
    Garcia M; Leduc C; Lagardère M; Argento A; Sibarita JB; Thoumine O
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6997-7002. PubMed ID: 26038554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.