These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Optical coherence tomography of human kidney. Onozato ML; Andrews PM; Li Q; Jiang J; Cable A; Chen Y J Urol; 2010 May; 183(5):2090-4. PubMed ID: 20303512 [TBL] [Abstract][Full Text] [Related]
8. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Wong BJ; Jackson RP; Guo S; Ridgway JM; Mahmood U; Su J; Shibuya TY; Crumley RL; Gu M; Armstrong WB; Chen Z Laryngoscope; 2005 Nov; 115(11):1904-11. PubMed ID: 16319597 [TBL] [Abstract][Full Text] [Related]
9. Multiphoton excitation of autofluorescence for microscopy of glioma tissue. Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340 [TBL] [Abstract][Full Text] [Related]
10. [Full-field OCT]. Dubois A; Boccara C Med Sci (Paris); 2006 Oct; 22(10):859-64. PubMed ID: 17026940 [TBL] [Abstract][Full Text] [Related]
12. Multiparametric high-resolution imaging of barley embryos by multiphoton microscopy and magnetic resonance micro-imaging. Stark M; Manz B; Ehlers A; Küppers M; Riemann I; Volke F; Siebert U; Weschke W; König K Microsc Res Tech; 2007 May; 70(5):426-32. PubMed ID: 17380495 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration. Linehan JA; Bracamonte ER; Hariri LP; Sokoloff MH; Rice PS; Barton JK; Nguyen MM BJU Int; 2011 Dec; 108(11):1820-4. PubMed ID: 21592299 [TBL] [Abstract][Full Text] [Related]
14. In vivo optical coherence tomography of the nasal mucosa. Mahmood U; Ridgway J; Jackson R; Guo S; Su J; Armstrong W; Shibuya T; Crumley R; Chen Z; Wong B Am J Rhinol; 2006; 20(2):155-9. PubMed ID: 16686378 [TBL] [Abstract][Full Text] [Related]
15. Optical coherence tomography for process control of laser micromachining. Wiesner M; Ihlemann J; Müller HH; Lankenau E; Hüttmann G Rev Sci Instrum; 2010 Mar; 81(3):033705. PubMed ID: 20370183 [TBL] [Abstract][Full Text] [Related]
16. Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. Yasuno Y; Miura M; Kawana K; Makita S; Sato M; Okamoto F; Yamanari M; Iwasaki T; Yatagai T; Oshika T Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):405-13. PubMed ID: 18676629 [TBL] [Abstract][Full Text] [Related]
17. Optical coherence tomography for ultrahigh resolution in vivo imaging. Fujimoto JG Nat Biotechnol; 2003 Nov; 21(11):1361-7. PubMed ID: 14595364 [TBL] [Abstract][Full Text] [Related]
18. Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Tearney GJ; Brezinski ME; Southern JF; Bouma BE; Boppart SA; Fujimoto JG Am J Gastroenterol; 1997 Oct; 92(10):1800-4. PubMed ID: 9382040 [TBL] [Abstract][Full Text] [Related]
19. In vivo endoscopic optical coherence tomography of the human gastrointestinal tract--toward optical biopsy. Jäckle S; Gladkova N; Feldchtein F; Terentieva A; Brand B; Gelikonov G; Gelikonov V; Sergeev A; Fritscher-Ravens A; Freund J; Seitz U; Soehendra S; Schrödern N Endoscopy; 2000 Oct; 32(10):743-9. PubMed ID: 11068832 [TBL] [Abstract][Full Text] [Related]
20. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Flueraru C; Popescu DP; Mao Y; Chang S; Sowa MG Phys Med Biol; 2010 Apr; 55(8):2317-31. PubMed ID: 20360632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]