These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22292494)

  • 1. The soft-confined method for creating molecular models of amorphous polymer surfaces.
    Liu H; Li Y; Krause WE; Rojas OJ; Pasquinelli MA
    J Phys Chem B; 2012 Feb; 116(5):1570-8. PubMed ID: 22292494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of water droplets on polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Chem Phys; 2006 Oct; 125(14):144712. PubMed ID: 17042636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and computational study of the effect of alcohols on the solution and adsorption properties of a nonionic symmetric triblock copolymer.
    Liu X; He F; Salas C; Pasquinelli MA; Genzer J; Rojas OJ
    J Phys Chem B; 2012 Feb; 116(4):1289-98. PubMed ID: 22188471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water.
    Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L
    Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement.
    Li S; Xiao M; Zheng A; Xiao H
    Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and association of a symmetric PEO-PPO-PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces.
    Li Y; Liu H; Song J; Rojas OJ; Hinestroza JP
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2349-57. PubMed ID: 21591790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation.
    Zhang Q; Brumer H; Ågren H; Tu Y
    Carbohydr Res; 2011 Nov; 346(16):2595-602. PubMed ID: 21974911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Ialpha crystal model.
    Yui T; Shiiba H; Tsutsumi Y; Hayashi S; Miyata T; Hirata F
    J Phys Chem B; 2010 Jan; 114(1):49-58. PubMed ID: 19928978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
    Charlier L; Mazeau K
    J Phys Chem B; 2012 Apr; 116(14):4163-74. PubMed ID: 22429051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations.
    Bergenstråhle M; Wohlert J; Larsson PT; Mazeau K; Berglund LA
    J Phys Chem B; 2008 Mar; 112(9):2590-5. PubMed ID: 18266351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grain model for natural cellulose fibrils in explicit water.
    Srinivas G; Cheng X; Smith JC
    J Phys Chem B; 2014 Mar; 118(11):3026-34. PubMed ID: 24564237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.
    Zhong W; Wang Y; Yan Y; Sun Y; Deng J; Yang W
    J Phys Chem B; 2007 Apr; 111(15):3918-26. PubMed ID: 17388624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study.
    Liu H; Sale KL; Holmes BM; Simmons BA; Singh S
    J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range effects of confinement on water structure.
    Fan Y; Gao YQ
    J Phys Chem B; 2010 Apr; 114(12):4246-51. PubMed ID: 20210292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers.
    Jur JS; Spagnola JC; Lee K; Gong B; Peng Q; Parsons GN
    Langmuir; 2010 Jun; 26(11):8239-44. PubMed ID: 20163129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roughness and ordering at the interface of oxidized polystyrene and water.
    Muntean SA; Kemper M; van IJzendoorn LJ; Lyulin AV
    Langmuir; 2011 Jul; 27(14):8678-86. PubMed ID: 21699178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water structuring over the hydrophobic surface of cellulose.
    Miyamoto H; Schnupf U; Brady JW
    J Agric Food Chem; 2014 Nov; 62(46):11017-23. PubMed ID: 25365241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.