These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 22292527)

  • 1. Electrochemical water oxidation with carbon-grafted iridium complexes.
    deKrafft KE; Wang C; Xie Z; Su X; Hinds BJ; Lin W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):608-13. PubMed ID: 22292527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation.
    Yagi M; Tomita E; Sakita S; Kuwabara T; Nagai K
    J Phys Chem B; 2005 Nov; 109(46):21489-91. PubMed ID: 16853788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.
    Blakemore JD; Schley ND; Balcells D; Hull JF; Olack GW; Incarvito CD; Eisenstein O; Brudvig GW; Crabtree RH
    J Am Chem Soc; 2010 Nov; 132(45):16017-29. PubMed ID: 20964386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.
    Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG
    ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organometallic ruthenium and iridium transfer-hydrogenation catalysts using coenzyme NADH as a cofactor.
    Betanzos-Lara S; Liu Z; Habtemariam A; Pizarro AM; Qamar B; Sadler PJ
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3897-900. PubMed ID: 22415924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes.
    Berardi S; Francàs L; Neudeck S; Maji S; Benet-Buchholz J; Meyer F; Llobet A
    ChemSusChem; 2015 Nov; 8(21):3688-96. PubMed ID: 26423045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking Water Oxidation Catalysts Based on Iridium Complexes: Clues and Doubts on the Nature of Active Species.
    Menendez Rodriguez G; Gatto G; Zuccaccia C; Macchioni A
    ChemSusChem; 2017 Nov; 10(22):4503-4509. PubMed ID: 28994240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-immobilized single-site iridium complexes for electrocatalytic water splitting.
    Joya KS; Subbaiyan NK; D'Souza F; de Groot HJ
    Angew Chem Int Ed Engl; 2012 Sep; 51(38):9601-5. PubMed ID: 22915549
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular water-oxidation catalysts for photoelectrochemical cells.
    Brimblecombe R; Dismukes GC; Swiegers GF; Spiccia L
    Dalton Trans; 2009 Nov; (43):9374-84. PubMed ID: 19859588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of iridium-based molecular catalysts during water oxidation with ceric ammonium nitrate.
    Grotjahn DB; Brown DB; Martin JK; Marelius DC; Abadjian MC; Tran HN; Kalyuzhny G; Vecchio KS; Specht ZG; Cortes-Llamas SA; Miranda-Soto V; van Niekerk C; Moore CE; Rheingold AL
    J Am Chem Soc; 2011 Nov; 133(47):19024-7. PubMed ID: 22059883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.
    Chen G; Chen L; Ng SM; Lau TC
    ChemSusChem; 2014 Jan; 7(1):127-34. PubMed ID: 24155063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.
    Thoi VS; Sun Y; Long JR; Chang CJ
    Chem Soc Rev; 2013 Mar; 42(6):2388-400. PubMed ID: 23034627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodic deposition of colloidal iridium oxide thin films from hexahydroxyiridate(IV) solutions.
    Zhao Y; Vargas-Barbosa NM; Hernandez-Pagan EA; Mallouk TE
    Small; 2011 Jul; 7(14):2087-93. PubMed ID: 21678551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical, electrochemical and photochemical molecular water oxidation catalysts.
    Bofill R; García-Antón J; Escriche L; Sala X
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):71-81. PubMed ID: 25547287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water reduction process performed by zinc metal under very mild conditions.
    Romero MJ; Pedrido R; González-Noya AM; Martínez-Calvo M; Zaragoza G; Bermejo MR
    Chem Commun (Camb); 2010 Jul; 46(28):5115-7. PubMed ID: 20532273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols.
    Fujita K; Tanino N; Yamaguchi R
    Org Lett; 2007 Jan; 9(1):109-11. PubMed ID: 17192097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.