BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22292813)

  • 1. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.
    Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED
    Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine-specific domain modulates the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Yan W; Tan M; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(9):4988-98. PubMed ID: 23525458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690.
    Zhou XL; Tan M; Wang M; Chen X; Wang ED
    Biochem J; 2010 Sep; 430(2):325-33. PubMed ID: 20557293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral insertion modulates the editing activity of the isolated CP1 domain of leucyl-tRNA synthetase.
    Liu RJ; Tan M; Du DH; Xu BS; Eriani G; Wang ED
    Biochem J; 2011 Dec; 440(2):217-27. PubMed ID: 21819379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Aminoacylation and Editing Properties of Leucyl-tRNA Synthetase by a Conserved Structural Module.
    Yan W; Ye Q; Tan M; Chen X; Eriani G; Wang ED
    J Biol Chem; 2015 May; 290(19):12256-67. PubMed ID: 25817995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution.
    Zhao MW; Zhu B; Hao R; Xu MG; Eriani G; Wang ED
    EMBO J; 2005 Apr; 24(7):1430-9. PubMed ID: 15775966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity.
    Betha AK; Williams AM; Martinis SA
    Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity.
    Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED
    RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase.
    Nawaz MH; Pang YL; Martinis SA
    J Mol Biol; 2007 Mar; 367(2):384-94. PubMed ID: 17270210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase.
    Tan M; Zhu B; Liu RJ; Chen X; Zhou XL; Wang ED
    Biochem J; 2013 Jan; 449(1):123-31. PubMed ID: 23035846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA
    Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile).
    Fukunaga R; Yokoyama S
    Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens.
    Li L; Palencia A; Lukk T; Li Z; Luthey-Schulten ZA; Cusack S; Martinis SA; Boniecki MT
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3817-22. PubMed ID: 23431144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.