These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22292926)

  • 21. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria.
    Sheng XF; Xia JJ
    Chemosphere; 2006 Aug; 64(6):1036-42. PubMed ID: 16516946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria.
    Bent E; Tuzun S; Chanway CP; Enebak S
    Can J Microbiol; 2001 Sep; 47(9):793-800. PubMed ID: 11683460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons.
    Reed ML; Glick BR
    Can J Microbiol; 2005 Dec; 51(12):1061-9. PubMed ID: 16462865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytokinins in shoot apices of Brassica napus plants during vernalization.
    Tarkowská D; Filek M; Biesaga-Kościelniak J; Marcińska I; Macháčková I; Krekule J; Strnad M
    Plant Sci; 2012 May; 187():105-12. PubMed ID: 22404838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.
    Deng W; Yan F; Zhang X; Tang Y; Yuan Y
    Plant Cell Physiol; 2015 Aug; 56(8):1624-40. PubMed ID: 26092973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways.
    Xie L; Chen F; Du H; Zhang X; Wang X; Yao G; Xu B
    BMC Plant Biol; 2020 Mar; 20(1):101. PubMed ID: 32138661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth.
    Sachdev DP; Chaudhari HG; Kasture VM; Dhavale DD; Chopade BA
    Indian J Exp Biol; 2009 Dec; 47(12):993-1000. PubMed ID: 20329704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Polyphase character of the dependence of Brassica napus germ root and hypocotyl growth on zeatin and thidiazuron concentrations with view of applicability to biological life support systems].
    Komarova GI; Babosha AV
    Aviakosm Ekolog Med; 2010; 44(2):61-5. PubMed ID: 20799663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43).
    Senthilkumar M; Madhaiyan M; Sundaram S; Kannaiyan S
    Microbiol Res; 2009; 164(1):92-104. PubMed ID: 17207982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris).
    Madhaiyan M; Poonguzhali S; Sa T
    Planta; 2007 Sep; 226(4):867-76. PubMed ID: 17541630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endogenous hormone levels and anatomical characters of haustoria in Santalum album L. seedlings before and after attachment to the host.
    Zhang X; Teixeira da Silva JA; Duan J; Deng R; Xu X; Ma G
    J Plant Physiol; 2012 Jun; 169(9):859-66. PubMed ID: 22475499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context.
    Sofo A; Vitti A; Nuzzaci M; Tataranni G; Scopa A; Vangronsveld J; Remans T; Falasca G; Altamura MM; Degola F; Sanità di Toppi L
    Physiol Plant; 2013 Dec; 149(4):487-98. PubMed ID: 23496095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene oxide and ABA cotreatment regulates root growth of Brassica napus L. by regulating IAA/ABA.
    Xie LL; Chen F; Zou XL; Shen SS; Wang XG; Yao GX; Xu BB
    J Plant Physiol; 2019 Sep; 240():153007. PubMed ID: 31310905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape.
    Sheng XF; Xia JJ; Jiang CY; He LY; Qian M
    Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between Medicago truncatula and Pseudomonas fluorescens: evaluation of costs and benefits across an elevated atmospheric CO(2).
    Lepinay C; Rigaud T; Salon C; Lemanceau P; Mougel C
    PLoS One; 2012; 7(9):e45740. PubMed ID: 23029215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings.
    Penrose DM; Moffatt BA; Glick BR
    Can J Microbiol; 2001 Jan; 47(1):77-80. PubMed ID: 15049453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomics reveal core activities of the plant growth-promoting bacterium
    Suchan DM; Bergsveinson J; Manzon L; Pierce A; Kryachko Y; Korber D; Tan Y; Tambalo DD; Khan NH; Whiting M; Yost CK
    Microb Genom; 2020 Nov; 6(11):. PubMed ID: 33151138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth.
    Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J
    Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization.
    Lugtenberg BJ; Kravchenko LV; Simons M
    Environ Microbiol; 1999 Oct; 1(5):439-46. PubMed ID: 11207764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.