These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22292926)

  • 41. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce.
    Noel TC; Sheng C; Yost CK; Pharis RP; Hynes MF
    Can J Microbiol; 1996 Mar; 42(3):279-83. PubMed ID: 8868235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth.
    Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J
    Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization.
    Lugtenberg BJ; Kravchenko LV; Simons M
    Environ Microbiol; 1999 Oct; 1(5):439-46. PubMed ID: 11207764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ethylene involvement in silique and seed development of canola, Brassica napus L.
    Walton LJ; Kurepin LV; Yeung EC; Shah S; Emery RJ; Reid DM; Pharis RP
    Plant Physiol Biochem; 2012 Sep; 58():142-50. PubMed ID: 22809685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site.
    Farwell AJ; Vesely S; Nero V; Rodriguez H; McCormack K; Shah S; Dixon DG; Glick BR
    Environ Pollut; 2007 Jun; 147(3):540-5. PubMed ID: 17141927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.
    Hassan TU; Bano A
    Plant Biol (Stuttg); 2016 Sep; 18(5):835-41. PubMed ID: 27263526
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.
    Liu Y; Chen L; Zhang N; Li Z; Zhang G; Xu Y; Shen Q; Zhang R
    Mol Plant Microbe Interact; 2016 Apr; 29(4):324-30. PubMed ID: 26808445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal.
    Goyet V; Billard E; Pouvreau JB; Lechat MM; Pelletier S; Bahut M; Monteau F; Spíchal L; Delavault P; Montiel G; Simier P
    J Exp Bot; 2017 Nov; 68(20):5539-5552. PubMed ID: 29069455
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface.
    Gupta V; Kumar GN; Buch A
    J Plant Physiol; 2020 May; 248():153144. PubMed ID: 32172097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.
    Kochar M; Srivastava S
    J Basic Microbiol; 2012 Apr; 52(2):123-31. PubMed ID: 21656820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system.
    Aarrouf J; Schoevaert D; Maldiney R; Perbal G
    Physiol Plant; 1999 Apr; 105(4):708-18. PubMed ID: 11542389
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Indole-3-Acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch.
    Suzuki S; He Y; Oyaizu H
    Curr Microbiol; 2003 Aug; 47(2):138-43. PubMed ID: 14506862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison.
    Croes S; Weyens N; Janssen J; Vercampt H; Colpaert JV; Carleer R; Vangronsveld J
    Microb Biotechnol; 2013 Jul; 6(4):371-84. PubMed ID: 23594409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.).
    Prasad AA; Babu S
    An Acad Bras Cienc; 2017; 89(2):1027-1040. PubMed ID: 28489199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of the plant hormone network to boron deficiency.
    Eggert K; von Wirén N
    New Phytol; 2017 Nov; 216(3):868-881. PubMed ID: 28833172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression.
    Kochar M; Upadhyay A; Srivastava S
    Res Microbiol; 2011 May; 162(4):426-35. PubMed ID: 21397014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues.
    Nan R; Carman JG; Salisbury FB
    J Plant Physiol; 1999 Oct; 155(4-5):556-60. PubMed ID: 11543183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombinant plasmid, pADPTel.
    Hirkala DL; Germida JJ
    Can J Microbiol; 2004 Aug; 50(8):595-604. PubMed ID: 15467785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus).
    Dunfield KE; Germida JJ
    Appl Environ Microbiol; 2003 Dec; 69(12):7310-8. PubMed ID: 14660380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.
    Liu F; Xing S; Ma H; Du Z; Ma B
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9155-64. PubMed ID: 23982328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.