These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22292941)

  • 1. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold.
    Teixeira J; Soares P; Benfeito S; Gaspar A; Garrido J; Murphy MP; Borges F
    Free Radic Res; 2012 May; 46(5):600-11. PubMed ID: 22292941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design.
    Wang JY; Li JQ; Xiao YM; Fu B; Qin ZH
    ChemMedChem; 2020 Mar; 15(5):404-410. PubMed ID: 32020724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging the gap between nature and antioxidant setbacks: delivering caffeic acid to mitochondria.
    Teixeira J; Soares P; Benfeito S; Murphy MP; Oliveira PJ; Borges F
    Methods Mol Biol; 2015; 1265():73-83. PubMed ID: 25634268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitochondria-targeted derivative of ascorbate: MitoC.
    Finichiu PG; Larsen DS; Evans C; Larsen L; Bright TP; Robb EL; Trnka J; Prime TA; James AM; Smith RA; Murphy MP
    Free Radic Biol Med; 2015 Dec; 89():668-78. PubMed ID: 26453920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.
    Kelso GF; Porteous CM; Coulter CV; Hughes G; Porteous WK; Ledgerwood EC; Smith RA; Murphy MP
    J Biol Chem; 2001 Feb; 276(7):4588-96. PubMed ID: 11092892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of mitochondrial oxidative damage using targeted antioxidants.
    Kelso GF; Porteous CM; Hughes G; Ledgerwood EC; Gane AM; Smith RA; Murphy MP
    Ann N Y Acad Sci; 2002 Apr; 959():263-74. PubMed ID: 11976201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models.
    Teixeira J; Cagide F; Benfeito S; Soares P; Garrido J; Baldeiras I; Ribeiro JA; Pereira CM; Silva AF; Andrade PB; Oliveira PJ; Borges F
    J Med Chem; 2017 Aug; 60(16):7084-7098. PubMed ID: 28745898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress.
    Garrido J; Gaspar A; Garrido EM; Miri R; Tavakkoli M; Pourali S; Saso L; Borges F; Firuzi O
    Biochimie; 2012 Apr; 94(4):961-7. PubMed ID: 22210493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway.
    Peng X; Wu G; Zhao A; Huang K; Chai L; Natarajan B; Yang S; Chen H; Lin C
    Life Sci; 2020 Apr; 247():117439. PubMed ID: 32070709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting lipoic acid to mitochondria: synthesis and characterization of a triphenylphosphonium-conjugated alpha-lipoyl derivative.
    Brown SE; Ross MF; Sanjuan-Pla A; Manas AR; Smith RA; Murphy MP
    Free Radic Biol Med; 2007 Jun; 42(12):1766-80. PubMed ID: 17512456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases.
    James AM; Sharpley MS; Manas AR; Frerman FE; Hirst J; Smith RA; Murphy MP
    J Biol Chem; 2007 May; 282(20):14708-18. PubMed ID: 17369262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipophilic phenolic antioxidants: correlation between antioxidant profile, partition coefficients and redox properties.
    Roleira FM; Siquet C; Orrù E; Garrido EM; Garrido J; Milhazes N; Podda G; Paiva-Martins F; Reis S; Carvalho RA; Silva EJ; Borges F
    Bioorg Med Chem; 2010 Aug; 18(16):5816-25. PubMed ID: 20650639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective Effect of Caffeic Acid Derivatives on tert-Butyl Hydroperoxide-Induced Oxidative Hepato-Toxicity and Mitochondrial Dysfunction in HepG2 Cells.
    Tsai TH; Yu CH; Chang YP; Lin YT; Huang CJ; Kuo YH; Tsai PJ
    Molecules; 2017 Apr; 22(5):. PubMed ID: 28452956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant Profile of 1-Monocaffeoyl Glycerol in Lipophobic/Lipophilic Media.
    Weng L; Li L; Ji L; Zhao D; Xu Z; Su J; Li B; Zhang X
    J Food Sci; 2019 Aug; 84(8):2091-2100. PubMed ID: 31313325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeic acid as antioxidant in fish muscle: mechanism of synergism with endogenous ascorbic acid and alpha-tocopherol.
    Iglesias J; Pazos M; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jan; 57(2):675-81. PubMed ID: 19117418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desrisking the Cytotoxicity of a Mitochondriotropic Antioxidant Based on Caffeic Acid by a PEGylated Strategy.
    Fernandes C; Benfeito S; Amorim R; Teixeira J; Oliveira PJ; Remião F; Borges F
    Bioconjug Chem; 2018 Aug; 29(8):2723-2733. PubMed ID: 29965741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation and anti-oxidant activity of cinnamic acid derivatives-g-CTS].
    Wu X; Hou Y; Li J; Li H
    Zhongguo Zhong Yao Za Zhi; 2011 May; 36(9):1168-71. PubMed ID: 21842642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caffeic acid phenethyl ester and its related compounds limit the functional alterations of the isolated mouse brain and liver mitochondria submitted to in vitro anoxia-reoxygenation: relationship to their antioxidant activities.
    Feng Y; Lu YW; Xu PH; Long Y; Wu WM; Li W; Wang R
    Biochim Biophys Acta; 2008 Apr; 1780(4):659-72. PubMed ID: 18230365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation in vitro: identification and mechanism of action of some cinnamic acid derivatives from red wine.
    Abu-Amsha R; Croft KD; Puddey IB; Proudfoot JM; Beilin LJ
    Clin Sci (Lond); 1996 Oct; 91(4):449-58. PubMed ID: 8983870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.