These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22293085)

  • 1. BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea.
    Temme N; Oeser B; Massaroli M; Heller J; Simon A; Collado IG; Viaud M; Tudzynski P
    Mol Plant Pathol; 2012 Sep; 13(7):704-18. PubMed ID: 22293085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response.
    Heller J; Ruhnke N; Espino JJ; Massaroli M; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2012 Jun; 25(6):802-16. PubMed ID: 22352714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites.
    Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea.
    Yang Q; Yin D; Yin Y; Cao Y; Ma Z
    Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Ellendorf U; Tudzynski B; Tudzynski P
    Eukaryot Cell; 2007 Feb; 6(2):211-21. PubMed ID: 17189492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea.
    Yan L; Yang Q; Sundin GW; Li H; Ma Z
    Fungal Genet Biol; 2010 Sep; 47(9):753-60. PubMed ID: 20595070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P
    Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea.
    Shao W; Yang Y; Zhang Y; Lv C; Ren W; Chen C
    Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea.
    Yang Q; Yan L; Gu Q; Ma Z
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):481-92. PubMed ID: 22526788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.
    Ma L; Salas O; Bowler K; Oren-Young L; Bar-Peled M; Sharon A
    Mol Plant Pathol; 2017 Feb; 18(2):263-275. PubMed ID: 26991954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants.
    Schumacher J; de Larrinoa IF; Tudzynski B
    Eukaryot Cell; 2008 Apr; 7(4):584-601. PubMed ID: 18263765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FRP1 F-box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens.
    Jonkers W; VAN Kan JA; Tijm P; Lee YW; Tudzynski P; Rep M; Michielse CB
    Mol Plant Pathol; 2011 Aug; 12(6):548-63. PubMed ID: 21722294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea.
    Yang Q; Jiang J; Mayr C; Hahn M; Ma Z
    Environ Microbiol; 2013 Oct; 15(10):2696-711. PubMed ID: 23601355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
    Harren K; Schumacher J; Tudzynski B
    PLoS One; 2012; 7(7):e41761. PubMed ID: 22844520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G; Berndt P; Hahn M
    Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea.
    Yin Y; Wu S; Chui C; Ma T; Jiang H; Hahn M; Ma Z
    PLoS Pathog; 2018 Sep; 14(9):e1007285. PubMed ID: 30212570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea.
    Mosbach A; Leroch M; Mendgen KW; Hahn M
    BMC Microbiol; 2011 Jan; 11():10. PubMed ID: 21232149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.