These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 22293204)
1. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204 [TBL] [Abstract][Full Text] [Related]
2. Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis. Ozawa K; Loh CT Methods Mol Biol; 2014; 1118():189-203. PubMed ID: 24395417 [TBL] [Abstract][Full Text] [Related]
3. An enhanced system for unnatural amino acid mutagenesis in E. coli. Young TS; Ahmad I; Yin JA; Schultz PG J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970 [TBL] [Abstract][Full Text] [Related]
4. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492 [TBL] [Abstract][Full Text] [Related]
6. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine. Sun R; Zheng H; Fang Z; Yao W Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076 [TBL] [Abstract][Full Text] [Related]
7. Designing and engineering of a site-specific incorporation of a keto group in uricase. Fang Z; Liu Y; Liu J; Sun R; Chen H; Gao X; Yao W Chem Biol Drug Des; 2011 Sep; 78(3):353-60. PubMed ID: 21585711 [TBL] [Abstract][Full Text] [Related]
8. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting. Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Stokes AL; Miyake-Stoner SJ; Peeler JC; Nguyen DP; Hammer RP; Mehl RA Mol Biosyst; 2009 Sep; 5(9):1032-8. PubMed ID: 19668869 [TBL] [Abstract][Full Text] [Related]
10. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731 [TBL] [Abstract][Full Text] [Related]
11. A general approach for the generation of orthogonal tRNAs. Wang L; Schultz PG Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556 [TBL] [Abstract][Full Text] [Related]
12. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli. Lee BS; Kim S; Ko BJ; Yoo TH Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794 [TBL] [Abstract][Full Text] [Related]
13. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence. Fukunaga J; Yokogawa T; Ohno S; Nishikawa K J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269 [TBL] [Abstract][Full Text] [Related]
14. Generation of a bacterium with a 21 amino acid genetic code. Mehl RA; Anderson JC; Santoro SW; Wang L; Martin AB; King DS; Horn DM; Schultz PG J Am Chem Soc; 2003 Jan; 125(4):935-9. PubMed ID: 12537491 [TBL] [Abstract][Full Text] [Related]
15. An expanded genetic code with a functional quadruplet codon. Anderson JC; Wu N; Santoro SW; Lakshman V; King DS; Schultz PG Proc Natl Acad Sci U S A; 2004 May; 101(20):7566-71. PubMed ID: 15138302 [TBL] [Abstract][Full Text] [Related]
16. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids. Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891 [TBL] [Abstract][Full Text] [Related]
17. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. Pott M; Schmidt MJ; Summerer D ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570 [TBL] [Abstract][Full Text] [Related]
18. The incorporation of a photoisomerizable amino acid into proteins in E. coli. Bose M; Groff D; Xie J; Brustad E; Schultz PG J Am Chem Soc; 2006 Jan; 128(2):388-9. PubMed ID: 16402807 [TBL] [Abstract][Full Text] [Related]
19. A new protein engineering approach combining chemistry and biology, part I; site-specific incorporation of 4-iodo-L-phenylalanine in vitro by using misacylated suppressor tRNAPhe. Kodama K; Fukuzawa S; Sakamoto K; Nakayama H; Kigawa T; Yabuki T; Matsuda N; Shirouzu M; Takio K; Tachibana K; Yokoyama S Chembiochem; 2006 Oct; 7(10):1577-81. PubMed ID: 16969782 [TBL] [Abstract][Full Text] [Related]
20. Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction. Zhao H; Ding W; Zang J; Yang Y; Liu C; Hu L; Chen Y; Liu G; Fang Y; Yuan Y; Lin S Nat Commun; 2021 Dec; 12(1):7039. PubMed ID: 34857769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]