These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 222934)
1. Mechanism of renal potassium conservation in the rat. Linas SL; Peterson LN; Anderson RJ; Aisenbrey GA; Simon FR; Berl T Kidney Int; 1979 Jun; 15(6):601-11. PubMed ID: 222934 [TBL] [Abstract][Full Text] [Related]
2. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone. Effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules. Mujais SK; Chekal MA; Jones WJ; Hayslett JP; Katz AI J Clin Invest; 1985 Jul; 76(1):170-6. PubMed ID: 2991336 [TBL] [Abstract][Full Text] [Related]
3. [Corticosteriod regulation of Na, K-ATPase and ion transport in diverse zones of rat kidney]. Bekmukhametova ZU; Iurasova TF Probl Endokrinol (Mosk); 1980; 26(3):67-71. PubMed ID: 6250142 [TBL] [Abstract][Full Text] [Related]
4. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats. Eiam-Ong S; Sabatini S Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986 [TBL] [Abstract][Full Text] [Related]
5. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. O'Neil RG; Hayhurst RA J Membr Biol; 1985; 85(2):169-79. PubMed ID: 2989528 [TBL] [Abstract][Full Text] [Related]
6. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Schambelan M; Sebastian A; Rector FC Kidney Int; 1981 May; 19(5):716-27. PubMed ID: 7026872 [TBL] [Abstract][Full Text] [Related]
7. Mineralocorticoid-stimulated renal acidification: the critical role of dietary sodium. Harrington JT; Hulter HN; Cohen JJ; Madias NE Kidney Int; 1986 Jul; 30(1):43-8. PubMed ID: 3018348 [TBL] [Abstract][Full Text] [Related]
8. Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium. Wald H; Garty H; Palmer LG; Popovtzer MM Am J Physiol; 1998 Aug; 275(2):F239-45. PubMed ID: 9691014 [TBL] [Abstract][Full Text] [Related]
9. Renal adaptation to potassium in the adrenalectomized rabbit. Role of distal tubular sodium-potassium adenosine triphosphatase. Garg LC; Narang N J Clin Invest; 1985 Sep; 76(3):1065-70. PubMed ID: 2995442 [TBL] [Abstract][Full Text] [Related]
10. Effect of chronic salt loading on renal Na-K-ATPase activity in the rat. Wald H; Epstein FH; Popovtzer MM Proc Soc Exp Biol Med; 1983 Mar; 172(3):291-6. PubMed ID: 6133284 [TBL] [Abstract][Full Text] [Related]
11. Chronic potassium supplementation of newborn dogs increases cortical Na,K-ATPase but not urinary potassium excretion. Lorenz JM; Manuli MA; Browne LE J Dev Physiol; 1990 Apr; 13(4):181-8. PubMed ID: 2177489 [TBL] [Abstract][Full Text] [Related]
12. Discordant aspects of aldosterone resistance in potassium depletion. Mujais SK; Chen Y; Nora NA Am J Physiol; 1992 Jun; 262(6 Pt 2):F972-9. PubMed ID: 1320334 [TBL] [Abstract][Full Text] [Related]