These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22293746)

  • 1. Modeling of composite piezoelectric structures with the finite volume method.
    Bolborici V; Dawson FP; Pugh MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):156-62. PubMed ID: 22293746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.
    Bolborici V; Dawson FP; Pugh MC
    Ultrasonics; 2014 Mar; 54(3):809-20. PubMed ID: 24210273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.
    Renteria Marquez IA; Bolborici V
    Ultrasonics; 2017 May; 77():69-78. PubMed ID: 28183069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radially composite piezoelectric ceramic tubular transducer in radial vibration.
    Shuyu L; Shuaijun W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2492-8. PubMed ID: 22083782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel modeling technique for the stator of traveling wave ultrasonic motors.
    Pons JL; Rodríguez H; Ceres R; Calderón L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1429-35. PubMed ID: 14682626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of piezoelectric devices with the finite volume method.
    Bolborici V; Dawson F; Pugh M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1673-91. PubMed ID: 20639161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of piezoelectric devices by two- and three-dimensional finite elements.
    Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):233-47. PubMed ID: 18285037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled circuit based representation of piezoelectric structures modeled using the finite volume method.
    Bolborici V; Dawson FP
    Ultrasonics; 2016 Mar; 66():103-110. PubMed ID: 26639999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):139-49. PubMed ID: 22293744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of lamb waves generated by integrated transducers in composite plates using a coupled finite element-normal modes expansion method.
    Moulin E; Assaad J; Delebarre C; Osmont D
    J Acoust Soc Am; 2000 Jan; 107(1):87-94. PubMed ID: 10641621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.
    Renteria-Marquez IA; Renteria-Marquez A; Tseng BTL
    Ultrasonics; 2018 Nov; 90():5-17. PubMed ID: 29902664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical model for guided wave inspection optimization for prismatic structures of any cross section.
    Sanderson RM; Catton PP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1016-26. PubMed ID: 21622057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method.
    Challande P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):135-40. PubMed ID: 18285025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer matrix modeling on a longitudinal-bending coupled piezoelectric transducer with single-phase excitation: Analysis and verification.
    Wang L; Wang X; Jin J; Yu P; Luo G
    Rev Sci Instrum; 2021 Sep; 92(9):095006. PubMed ID: 34598545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.
    Zelenyak AM; Schorer N; Sause MGR
    Ultrasonics; 2018 Feb; 83():103-113. PubMed ID: 28676149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the vibration characteristics of a finite-width corrugated cylindrical shell piezoelectric transducer.
    Xu L; Du H; Hu H; Shan X; Chen H; Hu Y; Chen X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1460-9. PubMed ID: 20529721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.