BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22293835)

  • 1. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.
    Cook IA; Ward KR
    PDA J Pharm Sci Technol; 2011; 65(5):457-67. PubMed ID: 22293835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Headspace Moisture Analysis for Investigating the Water Dynamics within a Sealed Vial Containing Freeze-dried Material.
    Cook IA; Ward KR
    PDA J Pharm Sci Technol; 2011; 65(1):2-11. PubMed ID: 21414935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near Infrared and Frequency Modulated Spectroscopy as Non-Invasive Methods for Moisture Assessment of Freeze-Dried Biologics.
    Affleck RP; Khamar D; Lowerre KM; Adler N; Cullen S; Yang M; McCoy TR
    J Pharm Sci; 2021 Oct; 110(10):3395-3402. PubMed ID: 34118253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Freeze-Drying Cycles for Pharmaceutical Products Using a Micro Freeze-Dryer.
    Fissore D; Harguindeguy M; Ramirez DV; Thompson TN
    J Pharm Sci; 2020 Jan; 109(1):797-806. PubMed ID: 31678249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
    Tang XC; Nail SL; Pikal MJ
    Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.
    Kauppinen A; Toiviainen M; Korhonen O; Aaltonen J; Järvinen K; Paaso J; Juuti M; Ketolainen J
    Anal Chem; 2013 Feb; 85(4):2377-84. PubMed ID: 23351045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of dryer load on freeze drying process design.
    Patel SM; Jameel F; Pikal MJ
    J Pharm Sci; 2010 Oct; 99(10):4363-79. PubMed ID: 20737639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers.
    De Beer TR; Wiggenhorn M; Hawe A; Kasper JC; Almeida A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP
    Talanta; 2011 Feb; 83(5):1623-33. PubMed ID: 21238761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a multipoint near-infrared spectroscopy method for in-line moisture content analysis during freeze-drying.
    Kauppinen A; Toiviainen M; Lehtonen M; Järvinen K; Paaso J; Juuti M; Ketolainen J
    J Pharm Biomed Anal; 2014 Jul; 95():229-37. PubMed ID: 24699368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the secondary drying step in freeze drying using TDLAS technology.
    Schneid SC; Gieseler H; Kessler WJ; Luthra SA; Pikal MJ
    AAPS PharmSciTech; 2011 Mar; 12(1):379-87. PubMed ID: 21359604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The graphical design space for the primary drying phase of freeze Drying: Factors affecting the dried product layer resistance.
    Srinivasan JM; Sacha GA; Nail SL
    Int J Pharm; 2023 Jan; 630():122417. PubMed ID: 36410667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product.
    Derksen MW; van de Oetelaar PJ; Maris FA
    J Pharm Biomed Anal; 1998 Jul; 17(3):473-80. PubMed ID: 9656158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for multivariate modeling of moisture content in freeze-dried mannitol-containing products by near-infrared spectroscopy.
    Yip WL; Gausemel I; Sande SA; Dyrstad K
    J Pharm Biomed Anal; 2012 Nov; 70():202-11. PubMed ID: 22824636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Container Closure Integrity Testing-Method Development for Freeze-Dried Products Using Laser-Based Headspace Oxygen Analysis.
    Hede JO; Fosbøl PL; Berg SW; Dahl S
    PDA J Pharm Sci Technol; 2019; 73(2):170-180. PubMed ID: 30361284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Well-plate freeze-drying: a high throughput platform for screening of physical properties of freeze-dried formulations.
    Trnka H; Rantanen J; Grohganz H
    Pharm Dev Technol; 2015 Jan; 20(1):65-73. PubMed ID: 24417680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of machine learning tools and NIR spectra to estimate residual moisture in freeze-dried products.
    Massei A; Falco N; Fissore D
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122485. PubMed ID: 36801736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of a micro freeze-dryer for the investigation of the primary drying stage of a freeze-drying process.
    Fissore D; Gallo G; Ruggiero AE; Thompson TN
    Eur J Pharm Biopharm; 2019 Aug; 141():121-129. PubMed ID: 31125719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.