These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22293932)

  • 41. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy.
    Liu SP; Fu RH; Wu DC; Hsu CY; Chang CH; Lee W; Lee YD; Liu CH; Chien YJ; Lin SZ; Shyu WC
    Stem Cells Dev; 2014 Feb; 23(4):421-33. PubMed ID: 24266622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-step generation of induced pluripotent stem cells from mouse fibroblasts using Id3 and Oct4.
    Moon JH; Heo JS; Kwon S; Kim J; Hwang J; Kang PJ; Kim A; Kim HO; Whang KY; Yoon BS; You S
    J Mol Cell Biol; 2012 Feb; 4(1):59-62. PubMed ID: 22131360
    [No Abstract]   [Full Text] [Related]  

  • 43. Reprogramming of adult human neural stem cells into induced pluripotent stem cells.
    Xie LQ; Sun HP; Wang T; Tang HL; Wang P; Zhu JH; Yao ZW; Feng XY
    Chin Med J (Engl); 2013 Mar; 126(6):1138-43. PubMed ID: 23506594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lentivirus-mediated RNA interference targeting WWTR1 in human colorectal cancer cells inhibits cell proliferation in vitro and tumor growth in vivo.
    Pan J; Li S; Chi P; Xu Z; Lu X; Huang Y
    Oncol Rep; 2012 Jul; 28(1):179-85. PubMed ID: 22470139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.
    Vazquez-Martin A; Vellon L; Quirós PM; Cufí S; Ruiz de Galarreta E; Oliveras-Ferraros C; Martin AG; Martin-Castillo B; López-Otín C; Menendez JA
    Cell Cycle; 2012 Mar; 11(5):974-89. PubMed ID: 22333578
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts.
    Wakao S; Kitada M; Kuroda Y; Shigemoto T; Matsuse D; Akashi H; Tanimura Y; Tsuchiyama K; Kikuchi T; Goda M; Nakahata T; Fujiyoshi Y; Dezawa M
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9875-80. PubMed ID: 21628574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection.
    Deng W; Cao X; Chen J; Zhang Z; Yu Q; Wang Y; Shao G; Zhou J; Gao X; Yu J; Xu X
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):18957-66. PubMed ID: 26269400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defined factors induce reprogramming of gastrointestinal cancer cells.
    Miyoshi N; Ishii H; Nagai K; Hoshino H; Mimori K; Tanaka F; Nagano H; Sekimoto M; Doki Y; Mori M
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):40-5. PubMed ID: 20018687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.
    Shoji E; Woltjen K; Sakurai H
    Methods Mol Biol; 2016; 1353():89-99. PubMed ID: 25971915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation and characterization of virus-free reprogrammed melanoma cells by the piggyBac transposon.
    Yin J; Fan Y; Qin D; Xiaocui Bian X; Bi X
    J Cancer Res Clin Oncol; 2013 Sep; 139(9):1591-9. PubMed ID: 23571855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector.
    Sommer CA; Sommer AG; Longmire TA; Christodoulou C; Thomas DD; Gostissa M; Alt FW; Murphy GJ; Kotton DN; Mostoslavsky G
    Stem Cells; 2010 Jan; 28(1):64-74. PubMed ID: 19904830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combining TGF-β signal inhibition and connexin43 silencing for iPSC induction from mouse cardiomyocytes.
    Dai P; Harada Y; Miyachi H; Tanaka H; Kitano S; Adachi T; Suzuki T; Hino H; Takamatsu T
    Sci Rep; 2014 Dec; 4():7323. PubMed ID: 25471520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells.
    Seki T; Yuasa S; Oda M; Egashira T; Yae K; Kusumoto D; Nakata H; Tohyama S; Hashimoto H; Kodaira M; Okada Y; Seimiya H; Fusaki N; Hasegawa M; Fukuda K
    Cell Stem Cell; 2010 Jul; 7(1):11-4. PubMed ID: 20621043
    [No Abstract]   [Full Text] [Related]  

  • 54. ESRRB plays a crucial role in the promotion of porcine cell reprograming.
    Yang F; Ren Y; Li H; Wang H
    J Cell Physiol; 2018 Feb; 233(2):1601-1611. PubMed ID: 28636277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient generation of nonhuman primate induced pluripotent stem cells.
    Zhong B; Trobridge GD; Zhang X; Watts KL; Ramakrishnan A; Wohlfahrt M; Adair JE; Kiem HP
    Stem Cells Dev; 2011 May; 20(5):795-807. PubMed ID: 21058905
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Successful disease-specific induced pluripotent stem cell generation from patients with kidney transplantation.
    Thatava T; Armstrong AS; De Lamo JG; Edukulla R; Khan YK; Sakuma T; Ohmine S; Sundsbak JL; Harris PC; Kudva YC; Ikeda Y
    Stem Cell Res Ther; 2011 Dec; 2(6):48. PubMed ID: 22142803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. p73 is required for appropriate BMP-induced mesenchymal-to-epithelial transition during somatic cell reprogramming.
    Martin-Lopez M; Maeso-Alonso L; Fuertes-Alvarez S; Balboa D; Rodríguez-Cortez V; Weltner J; Diez-Prieto I; Davis A; Wu Y; Otonkoski T; Flores ER; Menéndez P; Marques MM; Marin MC
    Cell Death Dis; 2017 Sep; 8(9):e3034. PubMed ID: 28880267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases.
    Cherkashova EA; Leonov GE; Namestnikova DD; Solov'eva AA; Gubskii IL; Bukharova TB; Gubskii LV; Goldstein DV; Yarygin KN
    Bull Exp Biol Med; 2020 Feb; 168(4):566-573. PubMed ID: 32157511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [A comparative analysis of colorectal carcinoma cell lines that differ in metastatic potential].
    Davydov-Sinitsyn AP; Bazhenova OV; Liskovykh MA; Ponomartsev SV; Chechik LL; Tomilin AN; Tolkunova EN
    Tsitologiia; 2013; 55(6):379-87. PubMed ID: 25509104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-renewal gene tracking to identify tumour-initiating cells associated with metastatic potential.
    Darini CY; Pisani DF; Hofman P; Pedeutour F; Sudaka I; Chomienne C; Dani C; Ladoux A
    Oncogene; 2012 May; 31(19):2438-49. PubMed ID: 21927026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.