These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22294124)

  • 41. Voluntary physical exercise alters attentional orienting and social behavior in a rat model of attention-deficit/hyperactivity disorder.
    Hopkins ME; Sharma M; Evans GC; Bucci DJ
    Behav Neurosci; 2009 Jun; 123(3):599-606. PubMed ID: 19485566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 1. Control by place, timing, and reinforcement rate.
    Williams J; Sagvolden G; Taylor E; Sagvolden T
    Behav Brain Res; 2009 Mar; 198(2):273-82. PubMed ID: 18824036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-methyl-D-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder.
    Jensen V; Rinholm JE; Johansen TJ; Medin T; Storm-Mathisen J; Sagvolden T; Hvalby O; Bergersen LH
    Neuroscience; 2009 Jan; 158(1):353-64. PubMed ID: 18571865
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar-Kyoto rat).
    Howells FM; Russell VA
    Brain Res; 2008 Mar; 1200():107-15. PubMed ID: 18295191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurobiology of animal models of attention-deficit hyperactivity disorder.
    Russell VA
    J Neurosci Methods; 2007 Apr; 161(2):185-98. PubMed ID: 17275916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reprint of "Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD)".
    Alsop B
    J Neurosci Methods; 2007 Nov; 166(2):XV-XXI. PubMed ID: 17980764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A rat model for attention deficit-hyperactivity disorder.
    Kohlert JG; Bloch GJ
    Physiol Behav; 1993 Jun; 53(6):1215-8. PubMed ID: 8346308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder.
    Green JT; Chess AC; Conquest CJ; Yegla BA
    Behav Neurosci; 2011 Dec; 125(6):979-87. PubMed ID: 22004263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Animal models of attention-deficit hyperactivity disorder.
    Davids E; Zhang K; Tarazi FI; Baldessarini RJ
    Brain Res Brain Res Rev; 2003 Apr; 42(1):1-21. PubMed ID: 12668288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Animal Models of ADHD?
    Stanford SC
    Curr Top Behav Neurosci; 2022; 57():363-393. PubMed ID: 35604570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alcohol and behavioral control: cognitive and neural mechanisms.
    Vogel-Sprott M; Easdon C; Fillmore M; Finn P; Justus A
    Alcohol Clin Exp Res; 2001 Jan; 25(1):117-21. PubMed ID: 11198706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ELOPTA: a novel microcontroller-based operant device.
    Hoffman AM; Song J; Tuttle EM
    Behav Res Methods; 2007 Nov; 39(4):776-82. PubMed ID: 18183890
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The KCNH3 inhibitor ASP2905 shows potential in the treatment of attention deficit/hyperactivity disorder.
    Takahashi S; Ohmiya M; Honda S; Ni K
    PLoS One; 2018; 13(11):e0207750. PubMed ID: 30462746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of histamine H(3) receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup.
    Fox GB; Pan JB; Esbenshade TA; Bennani YL; Black LA; Faghih R; Hancock AA; Decker MW
    Behav Brain Res; 2002 Apr; 131(1-2):151-61. PubMed ID: 11844582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the validity of the use of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder in males and females.
    Bayless DW; Perez MC; Daniel JM
    Behav Brain Res; 2015 Jun; 286():85-92. PubMed ID: 25724583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Behavioral and pharmacological studies of juvenile stroke-prone spontaneously hypertensive rats as an animal model of attention-deficit/hyperactivity disorder].
    Ueno K; Togashi H; Yoshioka M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Feb; 23(1):47-55. PubMed ID: 12690641
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Model of attention deficit hyperactivity disorder: five-trial, repeated acquisition inhibitory avoidance in spontaneously hypertensive rat pups.
    Fox GB
    Curr Protoc Pharmacol; 2004 Oct; Chapter 5():Unit 5.37. PubMed ID: 22294124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder.
    Kawaura K; Karasawa J; Chaki S; Hikichi H
    Behav Brain Res; 2014 Aug; 270():349-56. PubMed ID: 24882610
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.