These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22294209)

  • 21. Synthesis and characterization of wurtzite-phase copper tin selenide nanocrystals.
    Norako ME; Greaney MJ; Brutchey RL
    J Am Chem Soc; 2012 Jan; 134(1):23-6. PubMed ID: 22148639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution-based synthesis of quaternary Cu-In-Zn-S nanobelts with tunable composition and band gap.
    Zou C; Zhang L; Zhai L; Lin D; Gao J; Li Q; Yang Y; Chen X; Huang S
    Chem Commun (Camb); 2011 May; 47(18):5256-8. PubMed ID: 21380412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvothermal synthesis of monodisperse PbSe nanocrystals.
    Xu J; Ge JP; Li YD
    J Phys Chem B; 2006 Feb; 110(6):2497-501. PubMed ID: 16471846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.
    Zhong H; Lo SS; Mirkovic T; Li Y; Ding Y; Li Y; Scholes GD
    ACS Nano; 2010 Sep; 4(9):5253-62. PubMed ID: 20815394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals.
    Joo J; Yu T; Kim YW; Park HM; Wu F; Zhang JZ; Hyeon T
    J Am Chem Soc; 2003 May; 125(21):6553-7. PubMed ID: 12785795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application.
    Xu J; Luan CY; Tang YB; Chen X; Zapien JA; Zhang WJ; Kwong HL; Meng XM; Lee ST; Lee CS
    ACS Nano; 2010 Oct; 4(10):6064-70. PubMed ID: 20925392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y).
    Shavel A; Arbiol J; Cabot A
    J Am Chem Soc; 2010 Apr; 132(13):4514-5. PubMed ID: 20232869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A facile "dispersion-decomposition" route to metal sulfide nanocrystals.
    Zhuang Z; Lu X; Peng Q; Li Y
    Chemistry; 2011 Sep; 17(37):10445-52. PubMed ID: 21915921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, structure, and optical properties of the quaternary seleno-gallates NaLnGa4Se8 (Ln = La, Ce, Nd) and their comparison with the isostructural thio-gallates.
    Choudhury A; Dorhout PK
    Inorg Chem; 2008 May; 47(9):3603-9. PubMed ID: 18345598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4.
    Li Y; Fan W; Sun H; Cheng X; Li P; Zhao X
    J Phys Condens Matter; 2011 Jun; 23(22):225401. PubMed ID: 21572224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic structure and energetics of tetragonal SrCuO₂ and its high-pressure superstructure phase.
    Wang J; Rak Z; Zhang F; Ewing RC; Becker U
    J Phys Condens Matter; 2011 Nov; 23(46):465503. PubMed ID: 22056857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface effects on capped and uncapped nanocrystals.
    Bryant GW; Jaskolski W
    J Phys Chem B; 2005 Oct; 109(42):19650-6. PubMed ID: 16853541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.
    Wang G; Peng Q; Li Y
    Acc Chem Res; 2011 May; 44(5):322-32. PubMed ID: 21395256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor.
    Lu X; Zhuang Z; Peng Q; Li Y
    Chem Commun (Camb); 2011 Mar; 47(11):3141-3. PubMed ID: 21270977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavily doped semiconductor nanocrystal quantum dots.
    Mocatta D; Cohen G; Schattner J; Millo O; Rabani E; Banin U
    Science; 2011 Apr; 332(6025):77-81. PubMed ID: 21454783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO(4) nanocrystals.
    Fan W; Song X; Bu Y; Sun S; Zhao X
    J Phys Chem B; 2006 Nov; 110(46):23247-54. PubMed ID: 17107173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit.
    Fan FJ; Yu B; Wang YX; Zhu YL; Liu XJ; Yu SH; Ren Z
    J Am Chem Soc; 2011 Oct; 133(40):15910-3. PubMed ID: 21910492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of a low-band-gap small molecule based on acenaphthoquinoxaline for efficient bulk heterojunction solar cells.
    Mikroyannidis JA; Kabanakis AN; Kumar A; Sharma SS; Vijay YK; Sharma GD
    Langmuir; 2010 Aug; 26(15):12909-16. PubMed ID: 20666422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.