BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22295747)

  • 1. Analysis of the relationships among Longest Common Subsequences, Shortest Common Supersequences and patterns and its application on pattern discovery in biological sequences.
    Ning K; Ng HK; Leong HW
    Int J Data Min Bioinform; 2011; 5(6):611-25. PubMed ID: 22295747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a better solution to the shortest common supersequence problem: the deposition and reduction algorithm.
    Ning K; Leong HW
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S12. PubMed ID: 17217504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition and extension approach to find longest common subsequence for thousands of long sequences.
    Ning K
    Comput Biol Chem; 2010 Jun; 34(3):149-57. PubMed ID: 20570215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast parallel algorithm for finding the longest common sequence of multiple biosequences.
    Chen Y; Wan A; Liu W
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S4. PubMed ID: 17217522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences.
    Schulz MH; Bauer S; Robinson PN
    Int J Bioinform Res Appl; 2008; 4(1):81-95. PubMed ID: 18283030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm.
    Rigoutsos I; Floratos A
    Bioinformatics; 1998; 14(1):55-67. PubMed ID: 9520502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
    Seiler M; Mehrle A; Poustka A; Wiemann S
    BMC Bioinformatics; 2006 Mar; 7():144. PubMed ID: 16542452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining Contiguous Sequential Generators in Biological Sequences.
    Zhang J; Wang Y; Zhang C; Shi Y
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):855-867. PubMed ID: 26529774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A search for common patterns in many sequences.
    Roytberg MA
    Comput Appl Biosci; 1992 Feb; 8(1):57-64. PubMed ID: 1568127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extraction of symbolic determinants common to a family of biological sequences].
    Saurin W; Marlière P
    Biochimie; 1985 May; 67(5):517-21. PubMed ID: 2411300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An OpenMP-based tool for finding longest common subsequence in bioinformatics.
    Shikder R; Thulasiraman P; Irani P; Hu P
    BMC Res Notes; 2019 Apr; 12(1):220. PubMed ID: 30971295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coevolving solutions to the shortest common superstring problem.
    Zaritsky A; Sipper M
    Biosystems; 2004; 76(1-3):209-16. PubMed ID: 15351144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient constrained multiple sequence alignment with performance guarantee.
    Chin FY; Ho NL; Lam TW; Wong PW; Chan MY
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():337-46. PubMed ID: 16452809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved multiple sequence alignments using coupled pattern mining.
    Hossain KS; Patnaik D; Laxman S; Jain P; Bailey-Kellogg C; Ramakrishnan N
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1098-112. PubMed ID: 24384701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm for "the LCS problem" with application in compressing genome resequencing data.
    Beal R; Afrin T; Farheen A; Adjeroh D
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):544. PubMed ID: 27556803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing patterns for profile HMM search.
    Sun Y; Buhler J
    Bioinformatics; 2007 Jan; 23(2):e36-43. PubMed ID: 17237102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AliWABA: alignment on the web through an A-Bruijn approach.
    Jones NC; Zhi D; Raphael BJ
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W613-6. PubMed ID: 16845083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.