These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22295747)

  • 21. Incremental window-based protein sequence alignment algorithms.
    Rangwala H; Karypis G
    Bioinformatics; 2007 Jan; 23(2):e17-23. PubMed ID: 17237087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new similarity measure among protein sequences.
    Wu KP; Lin HN; Sung TY; Hsu WL
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():347-52. PubMed ID: 16452810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new greedy randomised adaptive search procedure for Multiple Sequence Alignment.
    Layeb A; Selmane M; Elhoucine MB
    Int J Bioinform Res Appl; 2013; 9(4):323-35. PubMed ID: 23797992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conserved key amino acid positions (CKAAPs) derived from the analysis of common substructures in proteins.
    Reddy BV; Li WW; Shindyalov IN; Bourne PE
    Proteins; 2001 Feb; 42(2):148-63. PubMed ID: 11119639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constrained multiple sequence alignment tool development and its application to RNase family alignment.
    Tang CY; Lu CL; Chang MD; Tsai YT; Sun YJ; Chao KM; Chang JM; Chiou YH; Wu CM; Chang HT; Chou WI
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():127-37. PubMed ID: 15838130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A profile-based deterministic sequential Monte Carlo algorithm for motif discovery.
    Liang KC; Wang X; Anastassiou D
    Bioinformatics; 2008 Jan; 24(1):46-55. PubMed ID: 18024972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RE-MuSiC: a tool for multiple sequence alignment with regular expression constraints.
    Chung YS; Lee WH; Tang CY; Lu CL
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W639-44. PubMed ID: 17488842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Searching for common sequence patterns among distantly related proteins.
    Suyama M; Nishioka T; Oda J
    Protein Eng; 1995 Nov; 8(11):1075-80. PubMed ID: 8819973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decomposition of overlapping patterns by cumulative local cross-correlation.
    Kogan SB
    J Bioinform Comput Biol; 2006 Apr; 4(2):571-87. PubMed ID: 16819803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MetaGenomeThreader: a software tool for predicting genes in DNA-sequences of metagenome projects.
    Schmitz-Hübsch DJ; Kurtz S
    Methods Mol Biol; 2010; 668():325-38. PubMed ID: 20830575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Weeder for the discovery of conserved transcription factor binding sites.
    Pavesi G; Pesole G
    Curr Protoc Bioinformatics; 2006 Oct; Chapter 2():Unit 2.11. PubMed ID: 18428764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supersequences of masks for oligo-chips.
    Guénoche A
    J Bioinform Comput Biol; 2004 Sep; 2(3):459-69. PubMed ID: 15359421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PMBC: pattern mining from biological sequences with wildcard constraints.
    Wu X; Zhu X; He Y; Arslan AN
    Comput Biol Med; 2013 Jun; 43(5):481-92. PubMed ID: 23566394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finding composite regulatory patterns in DNA sequences.
    Eskin E; Pevzner PA
    Bioinformatics; 2002; 18 Suppl 1():S354-63. PubMed ID: 12169566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous and multivariate alignment of protein sequences: correspondence between physicochemical profiles and structurally conserved regions (SCR).
    Depiereux E; Feytmans E
    Protein Eng; 1991 Aug; 4(6):603-13. PubMed ID: 1946318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple sequence alignment based on profile alignment of intermediate sequences.
    Lu Y; Sze SH
    J Comput Biol; 2008 Sep; 15(7):767-77. PubMed ID: 18662101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach to multiple sequence alignment using hadoop data grids.
    Sudha Sadasivam G; Baktavatchalam G
    Int J Bioinform Res Appl; 2010; 6(5):472-83. PubMed ID: 21224205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.