BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22295880)

  • 1. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.
    Huang H; Jia Y; Sun GX; Zhu YG
    Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.
    Jia Y; Huang H; Sun GX; Zhao FJ; Zhu YG
    Environ Sci Technol; 2012 Aug; 46(15):8090-6. PubMed ID: 22724924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice.
    Zhao FJ; Harris E; Yan J; Ma J; Wu L; Liu W; McGrath SP; Zhou J; Zhu YG
    Environ Sci Technol; 2013 Jul; 47(13):7147-54. PubMed ID: 23750559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field fluxes and speciation of arsines emanating from soils.
    Mestrot A; Feldmann J; Krupp EM; Hossain MS; Roman-Ross G; Meharg AA
    Environ Sci Technol; 2011 Mar; 45(5):1798-804. PubMed ID: 21284382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.
    Mestrot A; Uroic MK; Plantevin T; Islam MR; Krupp EM; Feldmann J; Meharg AA
    Environ Sci Technol; 2009 Nov; 43(21):8270-5. PubMed ID: 19924955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes.
    Li F; Zheng YM; He JZ
    Sci Total Environ; 2009 Apr; 407(8):2631-40. PubMed ID: 19155050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arsenic compound amendment on arsenic speciation in rice grain.
    Arao T; Kawasaki A; Baba K; Matsumoto S
    Environ Sci Technol; 2011 Feb; 45(4):1291-7. PubMed ID: 21247103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils.
    Turpeinen R; Pantsar-Kallio M; Kairesalo T
    Sci Total Environ; 2002 Feb; 285(1-3):133-45. PubMed ID: 11874036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal.
    Srivastava S; Verma PC; Singh A; Mishra M; Singh N; Sharma N; Singh N
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1275-91. PubMed ID: 22410743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Community dynamics of As(V)-reducing and As(III)-oxidizing genes during a wet-dry cycle in paddy soil amended with organic matter, gypsum, or iron oxide.
    Yuan C; Qiao J; Li F; Zhang X; Du Y; Hu M; Sun W
    J Hazard Mater; 2020 Jul; 393():122485. PubMed ID: 32193132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Arsenic Methylation and Volatilization Mediated by a Novel Bacterium from an Arsenic-Contaminated Paddy Soil.
    Huang K; Chen C; Zhang J; Tang Z; Shen Q; Rosen BP; Zhao FJ
    Environ Sci Technol; 2016 Jun; 50(12):6389-96. PubMed ID: 27258163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.
    Bachate SP; Cavalca L; Andreoni V
    J Appl Microbiol; 2009 Jul; 107(1):145-56. PubMed ID: 19291237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils.
    Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT
    Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization.
    Chen P; Li J; Wang HY; Zheng RL; Sun GX
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21739-21749. PubMed ID: 28766144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.
    Xiao KQ; Li LG; Ma LP; Zhang SY; Bao P; Zhang T; Zhu YG
    Environ Pollut; 2016 Apr; 211():1-8. PubMed ID: 26736050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.