These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22295880)

  • 21. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils.
    Yan M; Zeng X; Wang J; Meharg AA; Meharg C; Tang X; Zhang L; Bai L; Zhang J; Su S
    J Hazard Mater; 2020 Apr; 388():121795. PubMed ID: 31818673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem.
    Das S; Chou ML; Jean JS; Liu CC; Yang HJ
    Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area.
    Valverde A; González-Tirante M; Medina-Sierra M; Santa-Regina I; García-Sánchez A; Igual JM
    Chemosphere; 2011 Sep; 85(1):129-34. PubMed ID: 21724233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea.
    Chang JS; Kim YH; Kim KW
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial arsenic methylation in soil and rice rhizosphere.
    Jia Y; Huang H; Zhong M; Wang FH; Zhang LM; Zhu YG
    Environ Sci Technol; 2013 Apr; 47(7):3141-8. PubMed ID: 23469919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.
    Khan KA; Stroud JL; Zhu YG; McGrath SP; Zhao FJ
    Environ Sci Technol; 2010 Nov; 44(22):8515-21. PubMed ID: 20977268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.
    Nicol GW; Leininger S; Schleper C; Prosser JI
    Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil.
    Chen Z; Hou H; Zheng Y; Qin H; Zhu Y; Wu J; Wei W
    J Sci Food Agric; 2012 Mar; 92(5):1064-72. PubMed ID: 21796637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.
    Somenahally AC; Hollister EB; Yan W; Gentry TJ; Loeppert RH
    Environ Sci Technol; 2011 Oct; 45(19):8328-35. PubMed ID: 21870848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of biologic gasification potential of arsenic from contaminated natural soil by enumeration of arsenic methylating bacteria.
    Islam SM; Fukushi K; Yamamoto K; Saha GC
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):332-8. PubMed ID: 17354031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand.
    Anderson CR; Cook GM
    Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.
    Majumder A; Bhattacharyya K; Kole SC; Ghosh S
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5645-53. PubMed ID: 23443943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil.
    Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M
    J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.
    Han YH; Fu JW; Xiang P; Cao Y; Rathinasabapathi B; Chen Y; Ma LQ
    J Hazard Mater; 2017 Jan; 321():146-153. PubMed ID: 27619960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.