BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22295926)

  • 1. Flow characteristics of cerebrospinal fluid shunt tubing.
    Cheatle JT; Bowder AN; Agrawal SK; Sather MD; Hellbusch LC
    J Neurosurg Pediatr; 2012 Feb; 9(2):191-7. PubMed ID: 22295926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Protein Concentration on the Flow of Cerebrospinal Fluid Through Shunt Tubing.
    Cheatle JT; Bowder AN; Tefft JL; Agrawal SK; Hellbusch LC
    Neurosurgery; 2015 Dec; 77(6):972-8. PubMed ID: 26270195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretching and breaking characteristics of cerebrospinal fluid shunt tubing.
    Tomes DJ; Hellbusch LC; Alberts LR
    J Neurosurg; 2003 Mar; 98(3):578-83. PubMed ID: 12650431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices.
    Hanak BW; Ross EF; Harris CA; Browd SR; Shain W
    J Neurosurg Pediatr; 2016 Aug; 18(2):213-23. PubMed ID: 27035548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-sectional imaging of thoracic and abdominal complications of cerebrospinal fluid shunt catheters.
    Bolster F; Fardanesh R; Morgan T; Katz DS; Daly B
    Emerg Radiol; 2016 Apr; 23(2):117-25. PubMed ID: 26610766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recanalization of obstructed cerebrospinal fluid ventricular catheters using ultrasonic cavitation.
    Ginsberg HJ; Drake JM; Peterson TM; Cobbold RS
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS403-12; discussion ONS412. PubMed ID: 17041510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Sgouros S; Dipple SJ
    J Neurosurg; 2004 Mar; 100(3):534-40. PubMed ID: 15035291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the accuracy and proximal shunt failure rate of freehand placement versus intraoperative guidance in parietooccipital ventricular catheter placement.
    Wilson TJ; McCoy KE; Al-Holou WN; Molina SL; Smyth MD; Sullivan SE
    Neurosurg Focus; 2016 Sep; 41(3):E10. PubMed ID: 27581306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical complications in shunts.
    Sainte-Rose C; Piatt JH; Renier D; Pierre-Kahn A; Hirsch JF; Hoffman HJ; Humphreys RP; Hendrick EB
    Pediatr Neurosurg; 1991-1992; 17(1):2-9. PubMed ID: 1811706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventricular shunt tap as a predictor of proximal shunt malfunction in children: a prospective study.
    Rocque BG; Lapsiwala S; Iskandar BJ
    J Neurosurg Pediatr; 2008 Jun; 1(6):439-43. PubMed ID: 18518693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial Obstruction of Ventricular Catheters Affects Performance in a New Catheter Obstruction Model of Hydrocephalus.
    Lee S; Vinzani M; Romero B; Chan AY; CastaƱeyra-Ruiz L; Muhonen M
    Children (Basel); 2022 Sep; 9(10):. PubMed ID: 36291388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption.
    Brydon HL; Keir G; Thompson EJ; Bayston R; Hayward R; Harkness W
    J Neurol Neurosurg Psychiatry; 1998 May; 64(5):643-7. PubMed ID: 9598681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus.
    Blegvad C; Skjolding AD; Broholm H; Laursen H; Juhler M
    Acta Neurochir (Wien); 2013 Sep; 155(9):1763-72. PubMed ID: 23645322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study.
    Gruber RW; Roehrig B
    J Neurosurg Pediatr; 2010 Jan; 5(1):4-16. PubMed ID: 20043731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of proximal catheter occlusion and design of a shunt tap aspiration system.
    Olson E; Garst J; Blank J; Abbott H; Shaffer A; Anderson Z; Nair K; Lin J
    Childs Nerv Syst; 2021 Mar; 37(3):895-901. PubMed ID: 33029728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity.
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1995; 9(5):639-44. PubMed ID: 8561936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perforation holes in ventricular catheters--is less more?
    Thomale UW; Hosch H; Koch A; Schulz M; Stoltenburg G; Haberl EJ; Sprung C
    Childs Nerv Syst; 2010 Jun; 26(6):781-9. PubMed ID: 20024658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of antibiotic-impregnated shunt catheters in decreasing the incidence of shunt infection in the treatment of hydrocephalus.
    Sciubba DM; Stuart RM; McGirt MJ; Woodworth GF; Samdani A; Carson B; Jallo GI
    J Neurosurg; 2005 Aug; 103(2 Suppl):131-6. PubMed ID: 16370278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of magnetic resonance imaging to assess slow fluid flow in a model cerebrospinal fluid shunt system.
    Frank E; Buonocore M; Hein L
    Br J Neurosurg; 1990; 4(1):53-7. PubMed ID: 2334529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.