These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22295987)

  • 1. Learning invariance from natural images inspired by observations in the primary visual cortex.
    Teichmann M; Wiltschut J; Hamker F
    Neural Comput; 2012 May; 24(5):1271-96. PubMed ID: 22295987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the brain rapidly learn and reorganize view-invariant and position-invariant object representations in the inferotemporal cortex?
    Cao Y; Grossberg S; Markowitz J
    Neural Netw; 2011 Dec; 24(10):1050-61. PubMed ID: 21596523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invariant object recognition with trace learning and multiple stimuli present during training.
    Stringer SM; Rolls ET; Tromans JM
    Network; 2007 Jun; 18(2):161-87. PubMed ID: 17966074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invariant visual object recognition: a model, with lighting invariance.
    Rolls ET; Stringer SM
    J Physiol Paris; 2006; 100(1-3):43-62. PubMed ID: 17071062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invariant object recognition in the visual system with error correction and temporal difference learning.
    Rolls ET; Stringer SM
    Network; 2001 May; 12(2):111-29. PubMed ID: 11405418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function.
    Spratling MW
    Neural Comput; 2012 Jan; 24(1):60-103. PubMed ID: 22023197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning transform invariant object recognition in the visual system with multiple stimuli present during training.
    Stringer SM; Rolls ET
    Neural Netw; 2008 Sep; 21(7):888-903. PubMed ID: 18440774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid learning network for shift, orientation, and scaling invariant pattern recognition.
    Wang R
    Network; 2001 Nov; 12(4):493-512. PubMed ID: 11762901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons with two sites of synaptic integration learn invariant representations.
    Körding KP; König P
    Neural Comput; 2001 Dec; 13(12):2823-49. PubMed ID: 11705412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning invariant object recognition in the visual system with continuous transformations.
    Stringer SM; Perry G; Rolls ET; Proske JH
    Biol Cybern; 2006 Feb; 94(2):128-42. PubMed ID: 16369795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex.
    Li Z
    Neural Comput; 2001 Aug; 13(8):1749-80. PubMed ID: 11506669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling contextual modulation in the primary visual cortex.
    Huang W; Jiao L; Jia J
    Neural Netw; 2008 Oct; 21(8):1182-96. PubMed ID: 18650060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models of object recognition.
    Riesenhuber M; Poggio T
    Nat Neurosci; 2000 Nov; 3 Suppl():1199-204. PubMed ID: 11127838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning.
    Grossberg S; Markowitz J; Cao Y
    Neural Netw; 2011 Dec; 24(10):1036-49. PubMed ID: 21665428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images.
    Falconbridge MS; Stamps RL; Badcock DR
    Neural Comput; 2006 Feb; 18(2):415-29. PubMed ID: 16378520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning separate visual representations of independently rotating objects.
    Tromans JM; Page HJ; Stringer SM
    Network; 2012; 23(1-2):1-23. PubMed ID: 22364581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extraction of features and disparities from images by a model based on the neurological organisation of the visual system.
    Harvey RJ
    Vision Res; 2008 May; 48(11):1297-306. PubMed ID: 18417184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of the spontaneous symmetry-breaking theory for visual code completeness and spatial scaling in single-cell learning rules.
    Webber CJ
    Neural Comput; 2001 May; 13(5):1023-43. PubMed ID: 11359643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.