These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 22296174)
1. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations. Ahmad I; Ali Sheraz M; Ahmed S; Shad Z; Vaid FH Int J Cosmet Sci; 2012 Jun; 34(3):240-5. PubMed ID: 22296174 [TBL] [Abstract][Full Text] [Related]
2. Photochemical interaction of ascorbic acid with riboflavin, nicotinamide and alpha-tocopherol in cream formulations. Ahmad I; Sheraz MA; Ahmed S; Bano R; Vaid FH Int J Cosmet Sci; 2012 Apr; 34(2):123-31. PubMed ID: 22014159 [TBL] [Abstract][Full Text] [Related]
3. Photostability and interaction of ascorbic acid in cream formulations. Ahmad I; Sheraz MA; Ahmed S; Shaikh RH; Vaid FH; ur Rehman Khattak S; Ansari SA AAPS PharmSciTech; 2011 Sep; 12(3):917-23. PubMed ID: 21735345 [TBL] [Abstract][Full Text] [Related]
4. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting formulation characteristics and stability of ascorbic acid in water-in-oil creams. Sheraz MA; Khan MF; Ahmed S; Kazi SH; Khattak SR; Ahmad I Int J Cosmet Sci; 2014 Oct; 36(5):494-504. PubMed ID: 25066010 [TBL] [Abstract][Full Text] [Related]
6. Quenching mechanism and kinetics of ascorbic acid on the photosensitizing effects of synthetic food colorant FD&C Red Nr 3. Yang TS; Min DB J Food Sci; 2009; 74(9):C718-22. PubMed ID: 20492106 [TBL] [Abstract][Full Text] [Related]
7. [Effects of low molecular weight organic acids on redox reactions of mercury]. Zhao SB; Sun RG; Wang DY; Wang XW; Zhang C Huan Jing Ke Xue; 2014 Jun; 35(6):2193-200. PubMed ID: 25158495 [TBL] [Abstract][Full Text] [Related]
8. Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite. Squadrito GL; Jin X; Pryor WA Arch Biochem Biophys; 1995 Sep; 322(1):53-9. PubMed ID: 7574694 [TBL] [Abstract][Full Text] [Related]
9. Enhancing aspalathin stability in rooibos (Aspalathus linearis) ready-to-drink iced teas during storage: the role of nano-emulsification and beverage ingredients, citric and ascorbic acids. de Beer D; Joubert E; Viljoen M; Manley M J Sci Food Agric; 2012 Jan; 92(2):274-82. PubMed ID: 21780136 [TBL] [Abstract][Full Text] [Related]
10. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. Masuda T; Yoshihashi Y; Yonemochi E; Fujii K; Uekusa H; Terada K Int J Pharm; 2012 Jan; 422(1-2):160-9. PubMed ID: 22079714 [TBL] [Abstract][Full Text] [Related]
11. Compatibility of atenolol with excipients: LC-MS/TOF characterization of degradation/interaction products, and mechanisms of their formation. Kumar V; Shah RP; Malik S; Singh S J Pharm Biomed Anal; 2009 May; 49(4):880-8. PubMed ID: 19217740 [TBL] [Abstract][Full Text] [Related]
12. Understand the Stabilization Engineering of Ascorbic Acid, Mapping the Scheme for Stabilization, and Advancement. Shelke O; Susarla KPC; Bankar M AAPS PharmSciTech; 2024 Jul; 25(6):159. PubMed ID: 38987438 [TBL] [Abstract][Full Text] [Related]
13. Equilibrium studies of cellulase aggregates in presence of ascorbic and boric acid. Iram A; Amani S; Furkan M; Naeem A Int J Biol Macromol; 2013 Jan; 52():286-95. PubMed ID: 23107806 [TBL] [Abstract][Full Text] [Related]
14. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products. Tikekar RV; Anantheswaran RC; Elias RJ; LaBorde LF J Agric Food Chem; 2011 Aug; 59(15):8244-8. PubMed ID: 21699245 [TBL] [Abstract][Full Text] [Related]
15. Di-n-amyl L-tartrate-boric acid complex chiral selector in situ synthesis and its application in chiral nonaqueous capillary electrophoresis. Wang LJ; Hu SQ; Guo QL; Yang GL; Chen XG J Chromatogr A; 2011 Mar; 1218(9):1300-9. PubMed ID: 21276972 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems. Cardoso DR; Olsen K; Skibsted LH J Agric Food Chem; 2007 Jul; 55(15):6285-91. PubMed ID: 17585774 [TBL] [Abstract][Full Text] [Related]
17. Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin. Zhang B; Harb JN; Davis RC; Kim JW; Chu SH; Choi S; Miller T; Watt GD Inorg Chem; 2005 May; 44(10):3738-45. PubMed ID: 15877458 [TBL] [Abstract][Full Text] [Related]
18. Dissolution kinetics of polycrystalline calcium sulfate-based materials: influence of chemical modification. Fisher RD; Mbogoro MM; Snowden ME; Joseph MB; Covington JA; Unwin PR; Walton RI ACS Appl Mater Interfaces; 2011 Sep; 3(9):3528-37. PubMed ID: 21861513 [TBL] [Abstract][Full Text] [Related]
19. Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. Zhang X; Deng B; Guo J; Wang Y; Lan Y J Environ Manage; 2011 Apr; 92(4):1328-33. PubMed ID: 21236559 [TBL] [Abstract][Full Text] [Related]
20. Desorption of copper and cadmium from soils enhanced by organic acids. Yuan S; Xi Z; Jiang Y; Wan J; Wu C; Zheng Z; Lu X Chemosphere; 2007 Jul; 68(7):1289-97. PubMed ID: 17349675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]