BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 22296331)

  • 1. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition.
    Reinsch BC; Levard C; Li Z; Ma R; Wise A; Gregory KB; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jul; 46(13):6992-7000. PubMed ID: 22296331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.
    Levard C; Mitra S; Yang T; Jew AD; Badireddy AR; Lowry GV; Brown GE
    Environ Sci Technol; 2013 Jun; 47(11):5738-45. PubMed ID: 23641814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.
    Römer I; White TA; Baalousha M; Chipman K; Viant MR; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4226-33. PubMed ID: 21529813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are silver nanoparticles always toxic in the presence of environmental anions?
    Guo Z; Chen G; Zeng G; Yan M; Huang Z; Jiang L; Peng C; Wang J; Xiao Z
    Chemosphere; 2017 Mar; 171():318-323. PubMed ID: 28027476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity.
    Silva T; Pokhrel LR; Dubey B; Tolaymat TM; Maier KJ; Liu X
    Sci Total Environ; 2014 Jan; 468-469():968-76. PubMed ID: 24091120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles.
    You J; Zhang Y; Hu Z
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):161-7. PubMed ID: 21398101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish.
    Devi GP; Ahmed KB; Varsha MK; Shrijha BS; Lal KK; Anbazhagan V; Thiagarajan R
    Aquat Toxicol; 2015 Jan; 158():149-56. PubMed ID: 25438120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials.
    Kwok KW; Auffan M; Badireddy AR; Nelson CM; Wiesner MR; Chilkoti A; Liu J; Marinakos SM; Hinton DE
    Aquat Toxicol; 2012 Sep; 120-121():59-66. PubMed ID: 22634717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna.
    Kim J; Kim S; Lee S
    Nanotoxicology; 2011 Jun; 5(2):208-14. PubMed ID: 20804438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius.
    Lee SW; Park SY; Kim Y; Im H; Choi J
    Sci Total Environ; 2016 May; 553():565-573. PubMed ID: 26938319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.
    Geisler-Lee J; Wang Q; Yao Y; Zhang W; Geisler M; Li K; Huang Y; Chen Y; Kolmakov A; Ma X
    Nanotoxicology; 2013 May; 7(3):323-37. PubMed ID: 22263604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation.
    Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT
    Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant.
    Kent RD; Oser JG; Vikesland PJ
    Environ Sci Technol; 2014; 48(15):8564-72. PubMed ID: 25009955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.
    Xiu ZM; Ma J; Alvarez PJ
    Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.