These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22296509)

  • 1. Combined effects of π-π stacking and hydrogen bonding on the (N1) acidity of uracil and hydrolysis of 2'-deoxyuridine.
    Kellie JL; Navarro-Whyte L; Carvey MT; Wetmore SD
    J Phys Chem B; 2012 Mar; 116(8):2622-32. PubMed ID: 22296509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydrogen-bonding and stacking interactions with amino acids on the acidity of uracil.
    Hunter KC; Millen AL; Wetmore SD
    J Phys Chem B; 2007 Feb; 111(7):1858-71. PubMed ID: 17256895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective recognition of uracil and its derivatives using a DNA repair enzyme structural mimic.
    Jiang YL; Gao X; Zhou G; Patel A; Javer A
    J Org Chem; 2010 Jan; 75(2):324-33. PubMed ID: 20017469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating how discrete water molecules affect protein-DNA π-π and π(+)-π stacking and T-shaped interactions: the case of histidine-adenine dimers.
    Leavens FM; Churchill CD; Wang S; Wetmore SD
    J Phys Chem B; 2011 Sep; 115(37):10990-1003. PubMed ID: 21809837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic and thermodynamic study of the glycosidic bond cleavage in deoxyuridine.
    Millen AL; Archibald LA; Hunter KC; Wetmore SD
    J Phys Chem B; 2007 Apr; 111(14):3800-12. PubMed ID: 17388517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental effects on the enhancement in natural and damaged DNA nucleobase acidity because of discrete hydrogen-bonding interactions.
    Hunter KC; Wetmore SD
    J Phys Chem A; 2007 Mar; 111(10):1933-42. PubMed ID: 17302396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis.
    Shroyer MJ; Bennett SE; Putnam CD; Tainer JA; Mosbaugh DW
    Biochemistry; 1999 Apr; 38(15):4834-45. PubMed ID: 10200172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A post-SCF complete basis set study on the recognition patterns of uracil and cytosine by aromatic and pi-aromatic stacking interactions with amino acid residues.
    Cysewski P
    Phys Chem Chem Phys; 2008 May; 10(19):2636-45. PubMed ID: 18464978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state.
    Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP
    J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis.
    Lenz SA; Kohout JD; Wetmore SD
    J Phys Chem B; 2016 Dec; 120(50):12795-12806. PubMed ID: 27933981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of microsolvation on the adenine-uracil base pair and its radical anion: adenine-uracil mono- and dihydrates.
    Kim S; Schaefer HF
    J Phys Chem A; 2007 Oct; 111(41):10381-9. PubMed ID: 17705454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A QM/QM investigation of the hUNG2 reaction surface: the untold tale of a catalytic residue.
    Przybylski JL; Wetmore SD
    Biochemistry; 2011 May; 50(19):4218-27. PubMed ID: 21473605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties of hydrogen-bonded complexes of benzene(HCN)(1-4): comparison with benzene(H2O)(1-4).
    Mateus MP; Galamba N; Cabral BJ
    J Phys Chem A; 2011 Nov; 115(46):13714-23. PubMed ID: 21978376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrogen bonding on the acidity of adenine, guanine, and their 8-oxo derivatives.
    McConnell TL; Wheaton CA; Hunter KC; Wetmore SD
    J Phys Chem A; 2005 Jul; 109(28):6351-62. PubMed ID: 16833978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases.
    Churchill CD; Wetmore SD
    J Phys Chem B; 2009 Dec; 113(49):16046-58. PubMed ID: 19904910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of protein-carbohydrate interactions in mutant hen egg-white lysozyme complexes and their hydrolytic activity.
    Maenaka K; Matsushima M; Song H; Sunada F; Watanabe K; Kumagai I
    J Mol Biol; 1995 Mar; 247(2):281-93. PubMed ID: 7707375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrogen bonding properties of cytosine: a computational study of cytosine complexed with hydrogen fluoride, water, and ammonia.
    Hunter KC; Rutledge LR; Wetmore SD
    J Phys Chem A; 2005 Oct; 109(42):9554-62. PubMed ID: 16866407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Typical aromatic noncovalent interactions in proteins: A theoretical study using phenylalanine.
    Suresh CH; Mohan N; Vijayalakshmi KP; George R; Mathew JM
    J Comput Chem; 2009 Jul; 30(9):1392-404. PubMed ID: 19037862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.