These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22296756)

  • 1. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen.
    Takishita K; Chikaraishi Y; Leger MM; Kim E; Yabuki A; Ohkouchi N; Roger AJ
    Biol Direct; 2012 Feb; 7():5. PubMed ID: 22296756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Eukaryotes that Lack Sterols.
    Takishita K; Chikaraishi Y; Tanifuji G; Ohkouchi N; Hashimoto T; Fujikura K; Roger AJ
    J Eukaryot Microbiol; 2017 Nov; 64(6):897-900. PubMed ID: 28509379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae.
    Wiersma SJ; Mooiman C; Giera M; Pronk JT
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A squalene-hopene cyclase in
    Bouwknegt J; Wiersma SJ; Ortiz-Merino RA; Doornenbal ESR; Buitenhuis P; Giera M; Müller C; Pronk JT
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distinct pathway for tetrahymanol synthesis in bacteria.
    Banta AB; Wei JH; Welander PV
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13478-83. PubMed ID: 26483502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incomplete sterols and hopanoids pathways in ciliates: gene loss and acquisition during evolution as a source of biosynthetic genes.
    Tomazic ML; Poklepovich TJ; Nudel CB; Nusblat AD
    Mol Phylogenet Evol; 2014 May; 74():122-34. PubMed ID: 24525200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals.
    Nedelcu AM; Miles IH; Fagir AM; Karol K
    J Evol Biol; 2008 Nov; 21(6):1852-60. PubMed ID: 18717747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis.
    Stairs CW; Eme L; Muñoz-Gómez SA; Cohen A; Dellaire G; Shepherd JN; Fawcett JP; Roger AJ
    Elife; 2018 Apr; 7():. PubMed ID: 29697049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Too Much Eukaryote LGT.
    Martin WF
    Bioessays; 2017 Dec; 39(12):. PubMed ID: 29068466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of β-Carbonic Anhydrase Genes in Bacterial Genomic Islands and Their Horizontal Transfer to Protists.
    Zolfaghari Emameh R; Barker HR; Hytönen VP; Parkkila S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paleoproterozoic sterol biosynthesis and the rise of oxygen.
    Gold DA; Caron A; Fournier GP; Summons RE
    Nature; 2017 Mar; 543(7645):420-423. PubMed ID: 28264195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):297-354. PubMed ID: 11931142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.
    Schönknecht G; Weber AP; Lercher MJ
    Bioessays; 2014 Jan; 36(1):9-20. PubMed ID: 24323918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae.
    Hunsperger HM; Randhawa T; Cattolico RA
    BMC Evol Biol; 2015 Feb; 15():16. PubMed ID: 25887237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes.
    Sibbald SJ; Eme L; Archibald JM; Roger AJ
    Trends Parasitol; 2020 Nov; 36(11):927-941. PubMed ID: 32828660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites.
    Hirt RP; Alsmark C; Embley TM
    Curr Opin Microbiol; 2015 Feb; 23():155-62. PubMed ID: 25483352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron hydrogenases and the evolution of anaerobic eukaryotes.
    Horner DS; Foster PG; Embley TM
    Mol Biol Evol; 2000 Nov; 17(11):1695-709. PubMed ID: 11070057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a Firmicute.
    Stairs CW; Roger AJ; Hampl V
    Mol Biol Evol; 2011 Jul; 28(7):2087-99. PubMed ID: 21293046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic.
    Stechmann A; Baumgartner M; Silberman JD; Roger AJ
    BMC Evol Biol; 2006 Nov; 6():101. PubMed ID: 17123440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus.
    Pearson A; Budin M; Brocks JJ
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15352-7. PubMed ID: 14660793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.