These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22296828)

  • 21. Photochemical efficiency of adult and young leaves of the neotropical understory shrub Psychotria limonensis (Rubiaceae) in response to changes in the light environment.
    Avalos G; Mulkey SS
    Rev Biol Trop; 2004 Dec; 52(4):839-44. PubMed ID: 17354392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS.
    Yin X; Struik PC
    J Exp Bot; 2017 Apr; 68(9):2345-2360. PubMed ID: 28379522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology.
    Yin X; Struik PC
    J Exp Bot; 2015 Nov; 66(21):6535-49. PubMed ID: 26224881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum.
    Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z
    Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.
    Drewry DT; Kumar P; Long SP
    Glob Chang Biol; 2014 Jun; 20(6):1955-67. PubMed ID: 24700722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Progress in improving photosynthetic efficiency by synthetic biology].
    Zhang L; Lu C; Peng L; Ma W; Qian W
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):486-493. PubMed ID: 28941346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space - development of Java WIMOVAC.
    Song Q; Chen D; Long SP; Zhu XG
    Plant Cell Environ; 2017 Jan; 40(1):51-55. PubMed ID: 27529651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural genetic variation for morphological and molecular determinants of plant growth and yield.
    Nunes-Nesi A; Nascimento Vde L; de Oliveira Silva FM; Zsögön A; Araújo WL; Sulpice R
    J Exp Bot; 2016 May; 67(10):2989-3001. PubMed ID: 27012286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.
    Gu J; Yin X; Stomph TJ; Struik PC
    Plant Cell Environ; 2014 Jan; 37(1):22-34. PubMed ID: 23937619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Primary study on photosynthetic characteristics of Dendrobium nobile].
    Su W; Zhang G
    Zhong Yao Cai; 2003 Mar; 26(3):157-9. PubMed ID: 12856465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward cool C(4) crops.
    Long SP; Spence AK
    Annu Rev Plant Biol; 2013; 64():701-22. PubMed ID: 23473604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A canopy conundrum: can wind-induced movement help to increase crop productivity by relieving photosynthetic limitations?
    Burgess AJ; Gibbs JA; Murchie EH
    J Exp Bot; 2019 Apr; 70(9):2371-2380. PubMed ID: 30481324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Source-sink interaction: a century old concept under the light of modern molecular systems biology.
    Chang TG; Zhu XG; Raines C
    J Exp Bot; 2017 Jul; 68(16):4417-4431. PubMed ID: 28338782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting the engine of C(4) photosynthesis.
    Sage RF; Zhu XG
    J Exp Bot; 2011 May; 62(9):2989-3000. PubMed ID: 21652533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance Spectra.
    Heckmann D; Schlüter U; Weber APM
    Mol Plant; 2017 Jun; 10(6):878-890. PubMed ID: 28461269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetics as a key to improving crop photosynthesis.
    Theeuwen TPJM; Logie LL; Harbinson J; Aarts MGM
    J Exp Bot; 2022 May; 73(10):3122-3137. PubMed ID: 35235648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis.
    Miyake H
    Plant Cell Physiol; 2016 May; 57(5):890-6. PubMed ID: 26936788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light.
    Ishii H; Hamada Y; Utsugi H
    Tree Physiol; 2012 Oct; 32(10):1227-36. PubMed ID: 23077118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens.
    Covshoff S; Szecowka M; Hughes TE; Smith-Unna R; Kelly S; Bailey KJ; Sage TL; Pachebat JA; Leegood R; Hibberd JM
    Plant Physiol; 2016 Jan; 170(1):57-73. PubMed ID: 26527656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.