These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 22296994)
1. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Garcia JP; Beingesser J; Fisher DJ; Sayeed S; McClane BA; Posthaus H; Uzal FA Vet Microbiol; 2012 Jun; 157(3-4):412-9. PubMed ID: 22296994 [TBL] [Abstract][Full Text] [Related]
2. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. Ma M; Vidal J; Saputo J; McClane BA; Uzal F mBio; 2011 Jan; 2(1):e00338-10. PubMed ID: 21264065 [TBL] [Abstract][Full Text] [Related]
3. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Garcia JP; Adams V; Beingesser J; Hughes ML; Poon R; Lyras D; Hill A; McClane BA; Rood JI; Uzal FA Infect Immun; 2013 Jul; 81(7):2405-14. PubMed ID: 23630957 [TBL] [Abstract][Full Text] [Related]
4. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Sayeed S; Uzal FA; Fisher DJ; Saputo J; Vidal JE; Chen Y; Gupta P; Rood JI; McClane BA Mol Microbiol; 2008 Jan; 67(1):15-30. PubMed ID: 18078439 [TBL] [Abstract][Full Text] [Related]
5. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C Enterotoxemias. Uzal FA; Saputo J; Sayeed S; Vidal JE; Fisher DJ; Poon R; Adams V; Fernandez-Miyakawa ME; Rood JI; McClane BA Infect Immun; 2009 Dec; 77(12):5291-9. PubMed ID: 19805537 [TBL] [Abstract][Full Text] [Related]
6. Comparative neuropathology of ovine enterotoxemia produced by Clostridium perfringens type D wild-type strain CN1020 and its genetically modified derivatives. Garcia JP; Giannitti F; Finnie JW; Manavis J; Beingesser J; Adams V; Rood JI; Uzal FA Vet Pathol; 2015 May; 52(3):465-75. PubMed ID: 24964921 [TBL] [Abstract][Full Text] [Related]
7. Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like Quorum Sensing System. Li J; McClane BA mBio; 2020 Sep; 11(5):. PubMed ID: 32934089 [TBL] [Abstract][Full Text] [Related]
8. Detection of beta2 and major toxin genes by PCR in Clostridium perfringens field isolates of domestic animals suffering from enteritis or enterotoxaemia. Sting R Berl Munch Tierarztl Wochenschr; 2009; 122(9-10):341-7. PubMed ID: 19863004 [TBL] [Abstract][Full Text] [Related]
9. Pathology of Clostridium perfringens type C enterotoxemia in horses. Diab SS; Kinde H; Moore J; Shahriar MF; Odani J; Anthenill L; Songer G; Uzal FA Vet Pathol; 2012 Mar; 49(2):255-63. PubMed ID: 21502373 [TBL] [Abstract][Full Text] [Related]
10. Intestinal pathology in goats challenged with Morrell EL; Navarro MA; Garcia JP; Beingesser J; Uzal FA Vet Pathol; 2024 Sep; ():3009858241273122. PubMed ID: 39291644 [No Abstract] [Full Text] [Related]
11. Experimental Clostridium perfringens type D enterotoxemia in goats. Uzal FA; Kelly WR Vet Pathol; 1998 Mar; 35(2):132-40. PubMed ID: 9539367 [TBL] [Abstract][Full Text] [Related]
12. Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Vidal JE; Ma M; Saputo J; Garcia J; Uzal FA; McClane BA Mol Microbiol; 2012 Jan; 83(1):179-94. PubMed ID: 22150719 [TBL] [Abstract][Full Text] [Related]
13. Clostridium perfringens type A and beta2 toxin associated with enterotoxemia in a 5-week-old goat. Dray T Can Vet J; 2004 Mar; 45(3):251-3. PubMed ID: 15072200 [TBL] [Abstract][Full Text] [Related]
14. Intramural Vascular Edema in the Brain of Goats With Clostridium perfringens Type D Enterotoxemia. Ortega J; Verdes JM; Morrell EL; Finnie JW; Manavis J; Uzal FA Vet Pathol; 2019 May; 56(3):452-459. PubMed ID: 30663524 [TBL] [Abstract][Full Text] [Related]
15. Detection of alpha- and epsilon-toxigenic Clostridium perfringens type D in sheep and goats using a DNA amplification technique (PCR). Miserez R; Frey J; Buogo C; Capaul S; Tontis A; Burnens A; Nicolet J Lett Appl Microbiol; 1998 May; 26(5):382-6. PubMed ID: 9674169 [TBL] [Abstract][Full Text] [Related]
16. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. Li J; Ma M; Sarker MR; McClane BA mBio; 2013 Oct; 4(5):e00770-13. PubMed ID: 24105766 [TBL] [Abstract][Full Text] [Related]
17. Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections. Chen J; Ma M; Uzal FA; McClane BA Gut Microbes; 2014; 5(1):96-107. PubMed ID: 24061146 [TBL] [Abstract][Full Text] [Related]