BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 22297048)

  • 1. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.
    López-González D; Fernandez-Lopez M; Valverde JL; Sanchez-Silva L
    Bioresour Technol; 2013 Sep; 143():562-74. PubMed ID: 23835261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.
    Sanchez-Silva L; López-González D; Garcia-Minguillan AM; Valverde JL
    Bioresour Technol; 2013 Feb; 130():321-31. PubMed ID: 23313676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS).
    Huang YF; Kuan WH; Chiueh PT; Lo SL
    Bioresour Technol; 2011 Feb; 102(3):3527-34. PubMed ID: 21131197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components.
    Shi X; Wang J
    Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I. Lignin.
    Shen D; Hu J; Xiao R; Zhang H; Li S; Gu S
    Bioresour Technol; 2013 Feb; 130():449-56. PubMed ID: 23313692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi.
    Yang X; Zeng Y; Ma F; Zhang X; Yu H
    Bioresour Technol; 2010 Jul; 101(14):5475-9. PubMed ID: 20207135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between thermal behaviour of lignocellulosic components and properties of biomass.
    Pang CH; Gaddipatti S; Tucker G; Lester E; Wu T
    Bioresour Technol; 2014 Nov; 172():312-320. PubMed ID: 25277259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.
    Maddi B; Viamajala S; Varanasi S
    Bioresour Technol; 2011 Dec; 102(23):11018-26. PubMed ID: 21983407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass.
    Eom IY; Kim JY; Kim TS; Lee SM; Choi D; Choi IG; Choi JW
    Bioresour Technol; 2012 Jan; 104():687-94. PubMed ID: 22088658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents.
    Eom IY; Kim KH; Kim JY; Lee SM; Yeo HM; Choi IG; Choi JW
    Bioresour Technol; 2011 Feb; 102(3):3437-44. PubMed ID: 21074420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.