These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22297089)

  • 1. Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo.
    Mercatelli L; Sani E; Giannini A; Di Ninni P; Martelli F; Zaccanti G
    Nanoscale Res Lett; 2012 Feb; 7(1):96. PubMed ID: 22297089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.
    Sani E; Di Ninni P; Colla L; Barison S; Agresti F
    J Nanosci Nanotechnol; 2015 May; 15(5):3568-73. PubMed ID: 26504978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers.
    Mercatelli L; Sani E; Zaccanti G; Martelli F; Di Ninni P; Barison S; Pagura C; Agresti F; Jafrancesco D
    Nanoscale Res Lett; 2011 Apr; 6(1):282. PubMed ID: 21711795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Limiting of Carbon Nanohorn-Based Aqueous Nanofluids: A Systematic Study.
    Sani E; Papi N; Mercatelli L; Barison S; Agresti F; Rossi S; Dell'Oro A
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.
    Moradi A; Sani E; Simonetti M; Francini F; Chiavazzo E; Asinari P
    J Nanosci Nanotechnol; 2015 May; 15(5):3488-95. PubMed ID: 26504968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanohorns-based nanofluids as direct sunlight absorbers.
    Sani E; Barison S; Pagura C; Mercatelli L; Sansoni P; Fontani D; Jafrancesco D; Francini F
    Opt Express; 2010 Mar; 18(5):5179-87. PubMed ID: 20389531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative properties of dense nanofluids.
    Wei W; Fedorov AG; Luo Z; Ni M
    Appl Opt; 2012 Sep; 51(25):6159-71. PubMed ID: 22945164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.
    Taylor RA; Phelan PE; Otanicar TP; Adrian R; Prasher R
    Nanoscale Res Lett; 2011 Mar; 6(1):225. PubMed ID: 21711750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.
    Tang M; Alexander JM; Kwon D; Estillore AD; Laskina O; Young MA; Kleiber PD; Grassian VH
    J Phys Chem A; 2016 Jun; 120(24):4155-66. PubMed ID: 27253434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nPIV velocity measurement of nanofluids in the near-wall region of a microchannel.
    Anoop K; Sadr R
    Nanoscale Res Lett; 2012 May; 7(1):284. PubMed ID: 22651240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of fullerene nanoparticles suspensions in water based on optical scattering.
    Sene JA; Pinheiro MV; Krambrock K; Barbeira PJ
    Talanta; 2009 Jun; 78(4-5):1503-7. PubMed ID: 19362224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns.
    Cioffi C; Campidelli S; Sooambar C; Marcaccio M; Marcolongo G; Meneghetti M; Paolucci D; Paolucci F; Ehli C; Rahman GM; Sgobba V; Guldi DM; Prato M
    J Am Chem Soc; 2007 Apr; 129(13):3938-45. PubMed ID: 17343379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of electromagnetic theory and various approximations for computing the absorption efficiency and single-scattering albedo of hexagonal columns.
    Baran AJ; Havemann S
    Appl Opt; 2000 Oct; 39(30):5560-8. PubMed ID: 18354553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods.
    Urban C; Schurtenberger P
    J Colloid Interface Sci; 1998 Nov; 207(1):150-158. PubMed ID: 9778402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential optical spectroscopy for absorption characterization of mono & two-layered scattering media.
    Billet C; Sablong R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2622-5. PubMed ID: 18002533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-scattering-free light scattering spectroscopy with mode selectivity.
    Takagi S; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021401. PubMed ID: 20365562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids.
    Said Z; Allagui A; Abdelkareem MA; Alawadhi H; Elsaid K
    J Colloid Interface Sci; 2018 Jun; 520():50-57. PubMed ID: 29529460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface oxidation of single wall carbon nanohorns for the production of surfactant free water-based colloids.
    Agresti F; Barison S; Famengo A; Pagura C; Fedele L; Rossi S; Bobbo S; Rancan M; Fabrizio M
    J Colloid Interface Sci; 2018 Mar; 514():528-533. PubMed ID: 29289735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.