These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 22297090)

  • 1. Study of fluorescence quenching of Barley α-amylase.
    Bakkialakshmi S; Shanthi B; Bhuvanapriya T
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():12-7. PubMed ID: 22297090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin.
    Bakkialakshmi S; Chandrakala D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():2-9. PubMed ID: 22226896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis.
    Kadziola A; Søgaard M; Svensson B; Haser R
    J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and fluorescence quenching characterization of hematite nanoparticles.
    Al-Kady AS; Gaber M; Hussein MM; Ebeid el-ZM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):398-405. PubMed ID: 21925929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation on the fluorescence quenching of 9-aminoacridine by certain pyrimidines.
    Manivannan C; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):475-80. PubMed ID: 21839670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between α-amylase and an acidic branched polysaccharide from green tea.
    Wu S; Lai M; Luo J; Pan J; Zhang LM; Yang L
    Int J Biol Macromol; 2017 Jan; 94(Pt A):669-678. PubMed ID: 27756641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopy study on the interaction of quercetin with collagen.
    Yang X; Wu D; Du Z; Li R; Chen X; Li X
    J Agric Food Chem; 2009 May; 57(9):3431-5. PubMed ID: 19326949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide-quenching of Rhizomucor miehei lipase.
    Stobiecka A
    J Photochem Photobiol B; 2005 Jul; 80(1):9-18. PubMed ID: 15963433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stopped-flow kinetic studies of the reaction of barley alpha-amylase/subtilisin inhibitor and the high pI barley alpha-amylase.
    Sidenius U; Olsen K; Svensson B; Christensen U
    FEBS Lett; 1995 Mar; 361(2-3):250-4. PubMed ID: 7698332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin.
    Asha Jhonsi M; Kathiravan A; Renganathan R
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):167-72. PubMed ID: 19410435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.
    Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B
    Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-amylase from mung beans (Vigna radiata)--correlation of biochemical properties and tertiary structure by homology modelling.
    Tripathi P; Lo Leggio L; Mansfeld J; Ulbrich-Hofmann R; Kayastha AM
    Phytochemistry; 2007 Jun; 68(12):1623-31. PubMed ID: 17524440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of tin oxide nanoparticle binding on the structure and activity of α-amylase from Bacillus amyloliquefaciens.
    Khan MJ; Qayyum S; Alam F; Husain Q
    Nanotechnology; 2011 Nov; 22(45):455708. PubMed ID: 22020314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of isofraxidin to bovine serum albumin.
    Liu J; Tian J; Hu Z; Chen X
    Biopolymers; 2004 Mar; 73(4):443-50. PubMed ID: 14991661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase.
    Fitter J; Heberle J
    Biophys J; 2000 Sep; 79(3):1629-36. PubMed ID: 10969023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft.
    Kandra L; Hachem MA; Gyémánt G; Kramhøft B; Svensson B
    FEBS Lett; 2006 Sep; 580(21):5049-53. PubMed ID: 16949579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced electron-transfer from imidazole derivative to nano-semiconductors.
    Karunakaran C; Jayabharathi J; Jayamoorthy K; Devi KB
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():187-93. PubMed ID: 22261106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A steady-state and time-resolved fluorescence, circular dichroism study on the binding of myricetin to bovine serum albumin.
    Tian J; Zhao Y; Liu X; Zhao S
    Luminescence; 2009; 24(6):386-93. PubMed ID: 19480002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of alpha-amylase from malted jowar (Sorghum bicolor).
    Kumar RS; Singh SA; Rao AG
    J Agric Food Chem; 2005 Aug; 53(17):6883-8. PubMed ID: 16104815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.