These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22297127)
1. Identification and possible role of a MYB transcription factor from saffron (Crocus sativus). Gómez-Gómez L; Trapero-Mozos A; Gómez MD; Rubio-Moraga A; Ahrazem O J Plant Physiol; 2012 Mar; 169(5):509-15. PubMed ID: 22297127 [TBL] [Abstract][Full Text] [Related]
2. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors. Tsaftaris A; Pasentsis K; Makris A; Darzentas N; Polidoros A; Kalivas A; Argiriou A J Plant Physiol; 2011 Sep; 168(14):1675-84. PubMed ID: 21621873 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545 [TBL] [Abstract][Full Text] [Related]
4. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Castillo R; Fernández JA; Gómez-Gómez L Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835 [TBL] [Abstract][Full Text] [Related]
5. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823 [TBL] [Abstract][Full Text] [Related]
6. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174 [TBL] [Abstract][Full Text] [Related]
8. Cloning, structural characterization, and phylogenetic analysis of flower MADS-box genes from crocus (Crocus sativus L.). Tsaftaris AS; Polidoros AN; Pasentsis K; Kalivas A ScientificWorldJournal; 2007 Jun; 7():1047-62. PubMed ID: 17619787 [TBL] [Abstract][Full Text] [Related]
9. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Jain M; Srivastava PL; Verma M; Ghangal R; Garg R Sci Rep; 2016 Mar; 6():22456. PubMed ID: 26936416 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus. Gómez-Gómez L; Rubio-Moraga A; Ahrazem O Plant Biol (Stuttg); 2011 Mar; 13(2):297-303. PubMed ID: 21309976 [TBL] [Abstract][Full Text] [Related]
11. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. Ahrazem O; Rubio-Moraga A; Trapero A; Gómez-Gómez L J Exp Bot; 2012 Jan; 63(2):681-94. PubMed ID: 22048040 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome wide analysis of MADS box genes in Crocus sativus and interplay of CstMADS19-CstMADS26 in orchestrating apocarotenoid biosynthesis. Khurshaid N; Shabir N; Pala AH; Yadav AK; Singh D; Ashraf N Gene; 2025 Jan; 932():148893. PubMed ID: 39197797 [TBL] [Abstract][Full Text] [Related]
13. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals. Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Trapero A; Ahrazem O; Rubio-Moraga A; Jimeno ML; Gómez MD; Gómez-Gómez L Plant Physiol; 2012 Aug; 159(4):1335-54. PubMed ID: 22649274 [TBL] [Abstract][Full Text] [Related]
15. A flowering inhibitor of the temperature-dependent pathway in Crocus sativus L. Haghighi R; Sayed Tabatabaei BE; Maibody SAMM; Talebi M; Molina RV; Nebauer SG; Renau-Morata B Mol Biol Rep; 2020 Mar; 47(3):2171-2179. PubMed ID: 32065325 [TBL] [Abstract][Full Text] [Related]
16. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. Moraga AR; Mozos AT; Ahrazem O; Gómez-Gómez L BMC Plant Biol; 2009 Aug; 9():109. PubMed ID: 19695093 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus. Qian X; Sun Y; Zhou G; Yuan Y; Li J; Huang H; Xu L; Li L BMC Genomics; 2019 Nov; 20(1):857. PubMed ID: 31726972 [TBL] [Abstract][Full Text] [Related]
18. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
19. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694 [TBL] [Abstract][Full Text] [Related]
20. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Ahrazem O; Rubio-Moraga A; Argandoña-Picazo J; Castillo R; Gómez-Gómez L Plant Mol Biol; 2016 Jun; 91(3):355-74. PubMed ID: 27071403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]