These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mixed alkaline earth effect in the compressibility of aluminosilicate glasses. Smedskjaer MM; Rzoska SJ; Bockowski M; Mauro JC J Chem Phys; 2014 Feb; 140(5):054511. PubMed ID: 24511956 [TBL] [Abstract][Full Text] [Related]
3. Theoretical study on the role of surface basicity and lewis acidity on the etherification of glycerol over alkaline earth metal oxides. Calatayud M; Ruppert AM; Weckhuysen BM Chemistry; 2009 Oct; 15(41):10864-70. PubMed ID: 19760708 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of the surface reactivity of alkaline earth oxides: local density of states evaluation of the local softness. Cárdenas C; De Proft F; Chamorro E; Fuentealba P; Geerlings P J Chem Phys; 2008 Jan; 128(3):034708. PubMed ID: 18205519 [TBL] [Abstract][Full Text] [Related]
5. Nature of the chemical bond between metal atoms and oxide surfaces: new evidences from spin density studies of K atoms on alkaline earth oxides. Chiesa M; Giamello E; Di Valentin C; Pacchioni G; Sojka Z; Van Doorslaer S J Am Chem Soc; 2005 Dec; 127(48):16935-44. PubMed ID: 16316239 [TBL] [Abstract][Full Text] [Related]
6. Glycerol etherification over highly active CaO-based materials: new mechanistic aspects and related colloidal particle formation. Ruppert AM; Meeldijk JD; Kuipers BW; Erné BH; Weckhuysen BM Chemistry; 2008; 14(7):2016-24. PubMed ID: 18232047 [TBL] [Abstract][Full Text] [Related]
7. Probing the basicity of regular and defect sites of alkaline earth metal oxide surfaces by BF3 adsorption: a theoretical analysis. Di Valentin C; Locati C; Pacchioni G Chemphyschem; 2004 May; 5(5):642-51. PubMed ID: 15179716 [TBL] [Abstract][Full Text] [Related]
8. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO(2)-P(2)O(5)-CaF(2) glasses. Goel A; Rajagopal RR; Ferreira JM Acta Biomater; 2011 Nov; 7(11):4071-80. PubMed ID: 21763793 [TBL] [Abstract][Full Text] [Related]
9. Structural Compromise between High Hardness and Crack Resistance in Aluminoborate Glasses. Frederiksen KF; Januchta K; Mascaraque N; Youngman RE; Bauchy M; Rzoska SJ; Bockowski M; Smedskjaer MM J Phys Chem B; 2018 Jun; 122(23):6287-6295. PubMed ID: 29767513 [TBL] [Abstract][Full Text] [Related]
10. Effect of pressure on structure of oxide glasses at high pressure: Insights from solid-state NMR of quadrupolar nuclides. Lee SK Solid State Nucl Magn Reson; 2010; 38(2-3):45-57. PubMed ID: 21074379 [TBL] [Abstract][Full Text] [Related]
11. Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses. Andreola F; Barbieri L; Corradi A; Lancellotti I; Falcone R; Hreglich S Waste Manag; 2005; 25(2):183-9. PubMed ID: 15737716 [TBL] [Abstract][Full Text] [Related]
12. Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses⁻the Model Case of Gd₂O₃. Zekri M; Erlebach A; Herrmann A; Damak K; Rüssel C; Sierka M; Maâlej R Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30241314 [TBL] [Abstract][Full Text] [Related]
13. Boson peak of alkali and alkaline earth silicate glasses: influence of the nature and size of the network-modifying cation. Richet NF J Chem Phys; 2012 Jan; 136(3):034703. PubMed ID: 22280773 [TBL] [Abstract][Full Text] [Related]
14. Structure of high alumina content Al2O3-SiO2 composition glasses. Weber R; Sen S; Youngman RE; Hart RT; Benmore CJ J Phys Chem B; 2008 Dec; 112(51):16726-33. PubMed ID: 19053688 [TBL] [Abstract][Full Text] [Related]
15. Low photoelastic and optical properties in RO-SnO-P2O5 (R = Zn, Ba, Sr) glasses. Itadani M; Saitoh A; Masaoka Y; Takebe H Opt Lett; 2016 Jan; 41(1):45-8. PubMed ID: 26696154 [TBL] [Abstract][Full Text] [Related]
16. Preferential binding of fluorine to aluminum in high peralkaline aluminosilicate glasses. Karpukhina NG; Werner-Zwanziger U; Zwanziger JW; Kiprianov AA J Phys Chem B; 2007 Sep; 111(35):10413-20. PubMed ID: 17691839 [TBL] [Abstract][Full Text] [Related]
17. New interaction potentials for alkali and alkaline-earth aluminosilicate glasses. Sundararaman S; Huang L; Ispas S; Kob W J Chem Phys; 2019 Apr; 150(15):154505. PubMed ID: 31005086 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the formation of Al-NBO bonds, Al-O-Al linkages and clusters in alkaline-earth aluminosilicate glasses based on molecular dynamics simulations. Ganisetti S; Gaddam A; Kumar R; Balaji S; Mather GC; Pascual MJ; Fabian M; Siegel R; Senker J; Kharton VV; Guénolé J; Krishnan NMA; Ferreira JMF; Allu AR Phys Chem Chem Phys; 2019 Nov; 21(43):23966-23977. PubMed ID: 31642465 [TBL] [Abstract][Full Text] [Related]
19. Direct ¹⁷O NMR experimental evidence for Al-NBO bonds in Si-rich and highly polymerized aluminosilicate glasses. Jaworski A; Stevensson B; Edén M Phys Chem Chem Phys; 2015 Jul; 17(28):18269-72. PubMed ID: 26118845 [TBL] [Abstract][Full Text] [Related]
20. Connectivity and proximity between quadrupolar nuclides in oxide glasses: insights from through-bond and through-space correlations in solid-state NMR. Lee SK; Deschamps M; Hiet J; Massiot D; Park SY J Phys Chem B; 2009 Apr; 113(15):5162-7. PubMed ID: 19296644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]