These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22297367)

  • 1. Toward an electrically pumped spaser.
    Fedyanin DY
    Opt Lett; 2012 Feb; 37(3):404-6. PubMed ID: 22297367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of gain-assisted waveguiding in metal-dielectric nanowires.
    Handapangoda D; Rukhlenko ID; Premaratne M; Jagadish C
    Opt Lett; 2010 Dec; 35(24):4190-2. PubMed ID: 21165133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon polariton amplification in metal-semiconductor structures.
    Fedyanin DY; Arsenin AV
    Opt Express; 2011 Jun; 19(13):12524-31. PubMed ID: 21716493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.
    Liang D; Fiorentino M; Okumura T; Chang HH; Spencer DT; Kuo YH; Fang AW; Dai D; Beausoleil RG; Bowers JE
    Opt Express; 2009 Oct; 17(22):20355-64. PubMed ID: 19997264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells.
    Zhang X; Li Y; Li T; Lee SY; Feng C; Wang L; Mei T
    Opt Lett; 2010 Sep; 35(18):3075-7. PubMed ID: 20847783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full loss compensation in hybrid plasmonic waveguides under electrical pumping.
    Svintsov DA; Arsenin AV; Fedyanin DY
    Opt Express; 2015 Jul; 23(15):19358-75. PubMed ID: 26367596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Electro-Optical Pumping of Active Plasmonic Nanostructures.
    Vyshnevyy AA; Fedyanin DY
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design of composite nanowires for extended reach of surface plasmon-polaritons.
    Handapangoda D; Premaratne M; Rukhlenko ID; Jagadish C
    Opt Express; 2011 Aug; 19(17):16058-74. PubMed ID: 21934969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits.
    Fedyanin DY; Krasavin AV; Arsenin AV; Zayats AV
    Nano Lett; 2012 May; 12(5):2459-63. PubMed ID: 22448893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon polariton absorption modulator.
    Melikyan A; Lindenmann N; Walheim S; Leufke PM; Ulrich S; Ye J; Vincze P; Hahn H; Schimmel T; Koos C; Freude W; Leuthold J
    Opt Express; 2011 Apr; 19(9):8855-69. PubMed ID: 21643139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic mode-gap waveguides using hetero-metal films.
    Lee S; Kim S
    Opt Express; 2010 Feb; 18(3):2197-208. PubMed ID: 20174048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout.
    Udagedara IB; Rukhlenko ID; Premaratne M
    Opt Express; 2011 Oct; 19(21):19973-86. PubMed ID: 21997007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-range surface plasmon propagation supported by stimulated amplification using electrical injection.
    Li Y; Zhang H; Zhu N; Mei T; Zhang DH; Teng J
    Opt Express; 2011 Oct; 19(22):22107-12. PubMed ID: 22109054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure.
    Shen CW; Wang JY; Chuang WH; Chen HL; Lu YC; Kiang YW; Yang CC; Yang YJ
    Nanotechnology; 2009 Apr; 20(13):135202. PubMed ID: 19420488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unidirectional propagation of electrically driven surface plasmon polaritons: a numerical study.
    Jiang Z; Wang L
    Nanotechnology; 2020 Nov; 31(45):455207. PubMed ID: 32702679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges.
    Liang Y; Li C; Huang YZ; Zhang Q
    ACS Nano; 2020 Nov; 14(11):14375-14390. PubMed ID: 33119269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier.
    Livani AM; Kaatuzian H
    Appl Opt; 2015 Mar; 54(9):2164-73. PubMed ID: 25968496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements.
    Flammer PD; Banks JM; Furtak TE; Durfee CG; Hollingsworth RE; Collins RT
    Opt Express; 2010 Sep; 18(20):21013-23. PubMed ID: 20940996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.