BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22297429)

  • 1. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.
    Jung MY; Ng CY; Song H; Lee J; Oh MK
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):461-9. PubMed ID: 22297429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production.
    Jung MY; Park BS; Lee J; Oh MK
    Bioresour Technol; 2013 Jul; 139():21-7. PubMed ID: 23644066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of carbon flux and NADH/NAD
    Lu P; Gao T; Bai R; Yang J; Xu Y; Chu W; Jiang K; Zhang J; Xu F; Zhao H
    J Biotechnol; 2022 Nov; 358():67-75. PubMed ID: 36087783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate.
    Um J; Kim DG; Jung MY; Saratale GD; Oh MK
    Bioresour Technol; 2017 Dec; 245(Pt B):1567-1574. PubMed ID: 28596073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.
    Jang JW; Jung HM; Im DK; Jung MY; Oh MK
    Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production.
    Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes.
    Kim DG; Yoo SW; Kim M; Ko JK; Um Y; Oh MK
    Bioresour Technol; 2020 Aug; 309():123386. PubMed ID: 32330805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production.
    Kim DK; Rathnasingh C; Song H; Lee HJ; Seung D; Chang YK
    J Biosci Bioeng; 2013 Aug; 116(2):186-92. PubMed ID: 23643345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene.
    Geckil H; Barak Z; Chipman DM; Erenler SO; Webster DA; Stark BC
    Bioprocess Biosyst Eng; 2004 Oct; 26(5):325-30. PubMed ID: 15309606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol.
    Radoš D; Carvalho AL; Wieschalka S; Neves AR; Blombach B; Eikmanns BJ; Santos H
    Microb Cell Fact; 2015 Oct; 14():171. PubMed ID: 26511723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production.
    Rathnasingh C; Park JM; Kim DK; Song H; Chang YK
    Biotechnol Lett; 2016 Jun; 38(6):975-82. PubMed ID: 26886192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.
    Thapa LP; Lee SJ; Park C; Kim SW
    Enzyme Microb Technol; 2017 Jul; 102():1-8. PubMed ID: 28465055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.
    Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production.
    Jung MY; Jung HM; Lee J; Oh MK
    Biotechnol Biofuels; 2015; 8():106. PubMed ID: 26236395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production.
    Wang Q; Chen T; Zhao X; Chamu J
    Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.
    Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S
    Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.
    Park JM; Song H; Lee HJ; Seung D
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1057-66. PubMed ID: 23779220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.