These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 22297540)
1. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. Ketterer B; Uccelli E; Fontcuberta i Morral A Nanoscale; 2012 Mar; 4(5):1789-93. PubMed ID: 22297540 [TBL] [Abstract][Full Text] [Related]
2. Direct comparison of time-resolved Terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors. Alberding BG; Thurber WR; Heilweil EJ J Opt Soc Am B; 2017 Jul; 34(7):1392-1406. PubMed ID: 28924327 [TBL] [Abstract][Full Text] [Related]
3. Method for electrical characterization of nanowires. Gurwitz R; Shalish I Nanotechnology; 2011 Oct; 22(43):435705. PubMed ID: 21971447 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of carrier density and mobility in Mn ion-implanted GaAs:Zn nanowires by Raman spectroscopy. Kumar S; Corrêa GB; Devi C; Jacobsson D; Johannes A; Ronning C; Paraguassu W; Paschoal W; Pettersson H Nanotechnology; 2020 May; 31(20):205705. PubMed ID: 31995520 [TBL] [Abstract][Full Text] [Related]
5. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. Boland JL; Conesa-Boj S; Parkinson P; Tütüncüoglu G; Matteini F; Rüffer D; Casadei A; Amaduzzi F; Jabeen F; Davies CL; Joyce HJ; Herz LM; Fontcuberta i Morral A; Johnston MB Nano Lett; 2015 Feb; 15(2):1336-42. PubMed ID: 25602841 [TBL] [Abstract][Full Text] [Related]
6. Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires. Boland JL; Tütüncüoglu G; Gong JQ; Conesa-Boj S; Davies CL; Herz LM; Fontcuberta I Morral A; Johnston MB Nanoscale; 2017 Jun; 9(23):7839-7846. PubMed ID: 28555685 [TBL] [Abstract][Full Text] [Related]
7. Pressure tuning of the optical properties of GaAs nanowires. Zardo I; Yazji S; Marini C; Uccelli E; Fontcuberta i Morral A; Abstreiter G; Postorino P ACS Nano; 2012 Apr; 6(4):3284-91. PubMed ID: 22443867 [TBL] [Abstract][Full Text] [Related]
8. Quantum-confined nanowires as vehicles for enhanced electrical transport. Mohammad SN Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637 [TBL] [Abstract][Full Text] [Related]
9. Transport properties of single-crystalline n-type semiconducting PbTe nanowires. Jang SY; Kim HS; Park J; Jung M; Kim J; Lee SH; Roh JW; Lee W Nanotechnology; 2009 Oct; 20(41):415204. PubMed ID: 19755726 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and raman scattering from Zn(1-x)Mn(x)S diluted magnetic semiconductor nanowires. Wu J; Gutierrez HR; Eklund PC J Nanosci Nanotechnol; 2008 Jan; 8(1):393-9. PubMed ID: 18468089 [TBL] [Abstract][Full Text] [Related]
11. Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration. Steele JA; Lewis RA; Henini M; Lemine OM; Fan D; Mazur YI; Dorogan VG; Grant PC; Yu SQ; Salamo GJ Opt Express; 2014 May; 22(10):11680-9. PubMed ID: 24921290 [TBL] [Abstract][Full Text] [Related]
12. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires. Schäfer-Nolte EO; Stoica T; Gotschke T; Limbach FA; Sutter E; Sutter P; Grützmacher D; Calarco R Nanotechnology; 2010 Aug; 21(31):315702. PubMed ID: 20634570 [TBL] [Abstract][Full Text] [Related]
14. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Hwang JY; Kuo CC; Chen LC; Chen KH Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopy of self-catalyzed GaAs(1-x)Sb(x) nanowires grown on silicon. Alarcón-Lladó E; Conesa-Boj S; Wallart X; Caroff P; Fontcuberta i Morral A Nanotechnology; 2013 Oct; 24(40):405707. PubMed ID: 24029455 [TBL] [Abstract][Full Text] [Related]
16. Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses. Rodrigues AC; Nascimento ML; Bragatto CB; Souquet JL J Chem Phys; 2011 Dec; 135(23):234504. PubMed ID: 22191883 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the Hall effect in TlGaTe(2) single crystals. Qasrawi AF; Gasanly NM J Phys Condens Matter; 2009 Jun; 21(23):235802. PubMed ID: 21825596 [TBL] [Abstract][Full Text] [Related]
18. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential. Carrete J; Longo RC; Gallego LJ Nanotechnology; 2011 May; 22(18):185704. PubMed ID: 21427474 [TBL] [Abstract][Full Text] [Related]
19. High carrier mobility in monolayer CVD-grown MoS Huo N; Yang Y; Wu YN; Zhang XG; Pantelides ST; Konstantatos G Nanoscale; 2018 Aug; 10(31):15071-15077. PubMed ID: 30059107 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Chen JH; Jang C; Xiao S; Ishigami M; Fuhrer MS Nat Nanotechnol; 2008 Apr; 3(4):206-9. PubMed ID: 18654504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]