BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22297563)

  • 21. Two distinct classes of QTL determine rust resistance in sorghum.
    Wang X; Mace E; Hunt C; Cruickshank A; Henzell R; Parkes H; Jordan D
    BMC Plant Biol; 2014 Dec; 14():366. PubMed ID: 25551674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis.
    Li X; Li X; Fridman E; Tesso TT; Yu J
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
    Thurber CS; Ma JM; Higgins RH; Brown PJ
    Genome Biol; 2013 Jun; 14(6):R68. PubMed ID: 23803286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench).
    Xu W; Subudhi PK; Crasta OR; Rosenow DT; Mullet JE; Nguyen HT
    Genome; 2000 Jun; 43(3):461-9. PubMed ID: 10902709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL
    Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits.
    Sehgal D; Skot L; Singh R; Srivastava RK; Das SP; Taunk J; Sharma PC; Pal R; Raj B; Hash CT; Yadav RS
    PLoS One; 2015; 10(5):e0122165. PubMed ID: 25970600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes.
    Brown PJ; Rooney WL; Franks C; Kresovich S
    Genetics; 2008 Sep; 180(1):629-37. PubMed ID: 18757942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum.
    Gelli M; Mitchell SE; Liu K; Clemente TE; Weeks DP; Zhang C; Holding DR; Dweikat IM
    BMC Plant Biol; 2016 Jan; 16():16. PubMed ID: 26759170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural variation further increases resilience of sorghum bred for chronically drought-prone environments.
    Dong H; Birhan T; Abajebel N; Wakjira M; Mitiku T; Lemke C; Vadez V; Paterson AH; Bantte K
    J Exp Bot; 2022 Sep; 73(16):5730-5744. PubMed ID: 35605043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits.
    Messmer R; Fracheboud Y; Bänziger M; Vargas M; Stamp P; Ribaut JM
    Theor Appl Genet; 2009 Sep; 119(5):913-30. PubMed ID: 19597726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genotyping by Sequencing of 393
    Kong W; Kim C; Zhang D; Guo H; Tan X; Jin H; Zhou C; Shuang LS; Goff V; Sezen U; Pierce G; Compton R; Lemke C; Robertson J; Rainville L; Auckland S; Paterson AH
    G3 (Bethesda); 2018 Jul; 8(8):2563-2572. PubMed ID: 29853656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis.
    Venuprasad R; Dalid CO; Del Valle M; Zhao D; Espiritu M; Sta Cruz MT; Amante M; Kumar A; Atlin GN
    Theor Appl Genet; 2009 Dec; 120(1):177-90. PubMed ID: 19841886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum.
    Srinivas G; Satish K; Madhusudhana R; Reddy RN; Mohan SM; Seetharama N
    Theor Appl Genet; 2009 May; 118(8):1439-54. PubMed ID: 19274449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae).
    Zhang D; Kong W; Robertson J; Goff VH; Epps E; Kerr A; Mills G; Cromwell J; Lugin Y; Phillips C; Paterson AH
    BMC Plant Biol; 2015 Apr; 15():107. PubMed ID: 25896918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of QTL for Early Vigor and Stay-Green Conferring Tolerance to Drought in Two Connected Advanced Backcross Populations in Tropical Maize (Zea mays L.).
    Trachsel S; Sun D; SanVicente FM; Zheng H; Atlin GN; Suarez EA; Babu R; Zhang X
    PLoS One; 2016; 11(3):e0149636. PubMed ID: 26999525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic analysis comparing stay-green and senescent Sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait.
    Johnson SM; Cummins I; Lim FL; Slabas AR; Knight MR
    J Exp Bot; 2015 Dec; 66(22):7061-73. PubMed ID: 26320239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil.
    Bernardino KC; Pastina MM; Menezes CB; de Sousa SM; Maciel LS; Carvalho G; Guimarães CT; Barros BA; da Costa E Silva L; Carneiro PCS; Schaffert RE; Kochian LV; Magalhaes JV
    BMC Plant Biol; 2019 Feb; 19(1):87. PubMed ID: 30819116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering.
    Alam MM; Mace ES; van Oosterom EJ; Cruickshank A; Hunt CH; Hammer GL; Jordan DR
    Theor Appl Genet; 2014 Oct; 127(10):2253-66. PubMed ID: 25163934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.
    Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y
    J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.
    Carvalho G; Schaffert RE; Malosetti M; Viana JH; Menezes CB; Silva LA; Guimaraes CT; Coelho AM; Kochian LV; van Eeuwijk FA; Magalhaes JV
    G3 (Bethesda); 2015 Dec; 6(2):475-84. PubMed ID: 26681519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.