These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22297682)

  • 41. Quantitative fluorescence correction incorporating Förster resonance energy transfer and its use for measurement of hybridization efficiency on microarrays.
    Zhu J; Deng C; Huang G; Xu S; Mitchelson K; Cheng J
    Anal Chem; 2009 Feb; 81(4):1426-32. PubMed ID: 19161259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DFT study of the interaction between the conjugated fluorescein and dabcyl system, using fluorescene quenching method.
    Alvarado-González M; Gallo M; Lopez-Albarran P; Flores-Holguín N; Glossman-Mitnik D
    J Mol Model; 2012 Sep; 18(9):4113-20. PubMed ID: 22527277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-dimensional fluorescence lifetime and FRET measurements.
    Biskup C; Zimmer T; Kelbauskas L; Hoffmann B; Klöcker N; Becker W; Bergmann A; Benndorf K
    Microsc Res Tech; 2007 May; 70(5):442-51. PubMed ID: 17393489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectroscopic investigation of a FRET molecular beacon containing two fluorophores for probing DNA/RNA sequences.
    Jockusch S; Martí AA; Turro NJ; Li Z; Li X; Ju J; Stevens N; Akins DL
    Photochem Photobiol Sci; 2006 May; 5(5):493-8. PubMed ID: 16685327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems.
    Kukolka F; Schoeps O; Woggon U; Niemeyer CM
    Bioconjug Chem; 2007; 18(3):621-7. PubMed ID: 17378598
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembled pi-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET).
    Praveen VK; George SJ; Varghese R; Vijayakumar C; Ajayaghosh A
    J Am Chem Soc; 2006 Jun; 128(23):7542-50. PubMed ID: 16756309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-assembled DNA photonic wire for long-range energy transfer.
    Hannestad JK; Sandin P; Albinsson B
    J Am Chem Soc; 2008 Nov; 130(47):15889-95. PubMed ID: 18975869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular recognition with DNA nanoswitches: effects of single base mutations on structure.
    Mountford CP; Buck AH; Campbell CJ; Dickinson P; Ferapontova EE; Terry JG; Beattie JS; Walton AJ; Ghazal P; Mount AR; Crain J
    J Phys Chem B; 2008 Feb; 112(8):2439-44. PubMed ID: 18247590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combinatorial fluorescence energy transfer molecular beacons for probing nucleic acid sequences.
    Li X; Li Z; Martí AA; Jockusch S; Stevens N; Akins DL; Turro NJ; Ju J
    Photochem Photobiol Sci; 2006 Oct; 5(10):896-902. PubMed ID: 17019467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending.
    Dragan AI; Privalov PL
    Methods Enzymol; 2008; 450():185-99. PubMed ID: 19152861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA hybridization in thermoresponsive polymer nanoparticles.
    Moura LM; Martinho JM; Farinha JP
    Chemphyschem; 2010 Jun; 11(8):1749-56. PubMed ID: 20397240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.