BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22297791)

  • 41. Thickening properties and emulsification mechanisms of new derivatives of polysaccharides in aqueous solution.
    Akiyama E; Kashimoto A; Fukuda K; Hotta H; Suzuki T; Kitsuki T
    J Colloid Interface Sci; 2005 Feb; 282(2):448-57. PubMed ID: 15589552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of the oil globule fraction on the release rate profiles from multiple W/O/W emulsions.
    Bonnet M; Cansell M; Placin F; Monteil J; Anton M; Leal-Calderon F
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):44-52. PubMed ID: 20207114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of inner-phase components of water-in-oil-in-water emulsion on low-pH tolerance of Lactobacillus acidophilus incorporated into inner-water phase.
    Shima M; Matsuo T; Adachi S
    J Biosci Bioeng; 2007 Mar; 103(3):278-81. PubMed ID: 17434432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of highly monodisperse W/O emulsions with hydrophobically modified SPG membranes.
    Cheng CJ; Chu LY; Xie R
    J Colloid Interface Sci; 2006 Aug; 300(1):375-82. PubMed ID: 16631780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Importance of bacterial surface properties to control the stability of emulsions.
    Ly MH; Naïtali-Bouchez M; Meylheuc T; Bellon-Fontaine MN; Le TM; Belin JM; Waché Y
    Int J Food Microbiol; 2006 Oct; 112(1):26-34. PubMed ID: 16952409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of the Phase Inversion Point of Crude Oil Emulsion by Characterization of Crude Oil Physical Properties.
    Luo H; Wen J; Jiang R; Shao Q; Wang Z
    ACS Omega; 2022 Nov; 7(43):39136-39146. PubMed ID: 36340134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silicone oil emulsions stabilized by semi-solid nanostructures entrapped at the interface.
    Nam YS; Kim JW; Shim J; Han SH; Kim HK
    J Colloid Interface Sci; 2010 Nov; 351(1):102-7. PubMed ID: 20701920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phase transitions and microstructure of emulsion systems prepared with acylglycerols/zinc stearate emulsifier.
    Macierzanka A; Szelag H; Moschakis T; Murray BS
    Langmuir; 2006 Mar; 22(6):2487-97. PubMed ID: 16519445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of equilibrium Pickering emulsions--a matter of time scales.
    Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phase inversion of particle-stabilised perfume oil-water emulsions: experiment and theory.
    Binks BP; Fletcher PD; Holt BL; Beaussoubre P; Wong K
    Phys Chem Chem Phys; 2010 Oct; 12(38):11954-66. PubMed ID: 20733974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. W/O/W multiple emulsions with diclofenac sodium.
    Lindenstruth K; Müller BW
    Eur J Pharm Biopharm; 2004 Nov; 58(3):621-7. PubMed ID: 15451537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and alcohol.
    Radford SJ; Dickinson E; Golding M
    J Colloid Interface Sci; 2004 Jun; 274(2):673-86. PubMed ID: 15144844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Food grade duplex emulsions designed and stabilised with different osmotic pressures.
    Pawlik A; Cox PW; Norton IT
    J Colloid Interface Sci; 2010 Dec; 352(1):59-67. PubMed ID: 20828706
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interfacial Phenomena of Natural Dispersants for Crude Oil Spills.
    Guo F; de Lima Stebbins D; Toomey RG; Alcantar NA
    Langmuir; 2019 Dec; 35(48):15904-15913. PubMed ID: 31607124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of morphology and polymorphic transformation of fat crystals on the freeze-thaw stability of mayonnaise-type oil-in-water emulsions.
    Ishibashi C; Hondoh H; Ueno S
    Food Res Int; 2016 Nov; 89(Pt 1):604-613. PubMed ID: 28460956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.
    Aramaki K; Kimura M; Masuda K
    J Oleo Sci; 2015; 64(8):801-7. PubMed ID: 26178999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time Evolution and Effect of Dispersant on the Morphology and Viscosity of Water-In-Crude-Oil Emulsions.
    Muriel DF; Katz J
    Langmuir; 2021 Feb; 37(5):1725-1742. PubMed ID: 33497569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimum phase-behavior formulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion.
    Burguera JL; Avila-Gómez RM; Burguera M; Antón de Salager R; Salager JL; Bracho CL; Burguera-Pascu M; Burguera-Pascu C; Brunetto R; Gallignani M; Petit de Peña Y
    Talanta; 2003 Nov; 61(3):353-61. PubMed ID: 18969194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.