These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 22297970)

  • 1. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum control of a nanoparticle optically levitated in cryogenic free space.
    Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L
    Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent state transfer between itinerant microwave fields and a mechanical oscillator.
    Palomaki TA; Harlow JW; Teufel JD; Simmonds RW; Lehnert KW
    Nature; 2013 Mar; 495(7440):210-4. PubMed ID: 23486060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optomechanical dark mode.
    Dong C; Fiore V; Kuzyk MC; Wang H
    Science; 2012 Dec; 338(6114):1609-13. PubMed ID: 23160956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled quantized mechanical oscillators.
    Brown KR; Ospelkaus C; Colombe Y; Wilson AC; Leibfried D; Wineland DJ
    Nature; 2011 Mar; 471(7337):196-9. PubMed ID: 21346762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.
    Thompson JD; Zwickl BM; Jayich AM; Marquardt F; Girvin SM; Harris JG
    Nature; 2008 Mar; 452(7183):72-5. PubMed ID: 18322530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement-based control of a mechanical oscillator at its thermal decoherence rate.
    Wilson DJ; Sudhir V; Piro N; Schilling R; Ghadimi A; Kippenberg TJ
    Nature; 2015 Aug; 524(7565):325-9. PubMed ID: 26258303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary entangled radiation from micromechanical motion.
    Barzanjeh S; Redchenko ES; Peruzzo M; Wulf M; Lewis DP; Arnold G; Fink JM
    Nature; 2019 Jun; 570(7762):480-483. PubMed ID: 31243386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
    Pirkkalainen JM; Cho SU; Li J; Paraoanu GS; Hakonen PJ; Sillanpää MA
    Nature; 2013 Feb; 494(7436):211-5. PubMed ID: 23407536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and Coulomb-type interaction.
    Mekonnen HD; Tesfahannes TG; Darge TY; Kumela AG
    Sci Rep; 2023 Aug; 13(1):13800. PubMed ID: 37612322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing micromechanical motion by optical excitation of a single quantum dot.
    Kettler J; Vaish N; de Lépinay LM; Besga B; de Assis PL; Bourgeois O; Auffèves A; Richard M; Claudon J; Gérard JM; Pigeau B; Arcizet O; Verlot P; Poizat JP
    Nat Nanotechnol; 2021 Mar; 16(3):283-287. PubMed ID: 33349683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal for entangling remote micromechanical oscillators via optical measurements.
    Børkje K; Nunnenkamp A; Girvin SM
    Phys Rev Lett; 2011 Sep; 107(12):123601. PubMed ID: 22026768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong coupling of a mechanical oscillator and a single atom.
    Hammerer K; Wallquist M; Genes C; Ludwig M; Marquardt F; Treutlein P; Zoller P; Ye J; Kimble HJ
    Phys Rev Lett; 2009 Aug; 103(6):063005. PubMed ID: 19792563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.