These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22298234)

  • 1. Fourier transform general formula for systematic potentials.
    Ishida K
    J Comput Chem; 2012 Apr; 33(9):924-36. PubMed ID: 22298234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of multicenter one-electron integrals of noninteger u screened Coulomb type potentials and their derivatives over noninteger n Slater orbitals.
    Guseinov II; Mamedov BA
    J Chem Phys; 2004 Jul; 121(4):1649-54. PubMed ID: 15260714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular integrals over the gauge-including atomic orbitals. II. The Breit-Pauli interaction.
    Ishida K
    J Comput Chem; 2003 Nov; 24(15):1874-90. PubMed ID: 14515370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions.
    Komornicki A; King HF
    J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical GIAO and hybrid-basis integral derivatives: application to geometry optimization of molecules in strong magnetic fields.
    Tellgren EI; Reine SS; Helgaker T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9492-9. PubMed ID: 22653039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of molecular integrals over Slater-type orbitals using recurrence relations for overlap integrals and basic one-center Coulomb integrals.
    Guseinov I; Mamedov B; Rzaeva A
    J Mol Model; 2002 Apr; 8(4):145-9. PubMed ID: 12111393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified treatment of multicenter integrals of integer and noninteger u Yukawa-type screened Coulomb type potentials and their derivatives over Slater orbitals.
    Guseinov II
    J Chem Phys; 2004 May; 120(20):9454-7. PubMed ID: 15267956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. I. Coulomb and hybrid integrals.
    Lesiuk M; Moszynski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063318. PubMed ID: 25615232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of the algorithms for the calculation of Slater molecular integrals in polyatomic molecules.
    Fernández Rico J; López R; Ema I; Ramírez G
    J Comput Chem; 2004 Dec; 25(16):1987-94. PubMed ID: 15473010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians.
    Reine S; Tellgren E; Helgaker T
    Phys Chem Chem Phys; 2007 Sep; 9(34):4771-9. PubMed ID: 17712455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A class of Fourier integrals based on the electric potential of an elongated dipole.
    Skianis GA
    Springerplus; 2014; 3():729. PubMed ID: 26034699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Gauss quadratures, a promising route for an efficient evaluation of multicenter integrals over B functions.
    Rebabti A; Ghomari R; Bouferguene A
    J Chem Phys; 2009 May; 130(20):204103. PubMed ID: 19485433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.
    Ishida K
    J Comput Chem; 2002 Feb; 23(3):378-93. PubMed ID: 11908501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs.
    Duret S; Bouferguene A; Safouhi H
    J Comput Chem; 2008 Apr; 29(6):934-44. PubMed ID: 17999382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly accurate evaluation of atomic three-electron integrals of lowest orders.
    Harris FE; Frolov AM; Smith VH
    J Chem Phys; 2004 Jun; 120(21):9974-83. PubMed ID: 15268016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise recursive formula for calculating spot size in optical waveguides and accurate evaluation of splice loss.
    Kokubun Y; Tamura S
    Appl Opt; 1995 Oct; 34(30):6862-73. PubMed ID: 21060547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials.
    Guseinov I
    J Mol Model; 2003 Jun; 9(3):190-4. PubMed ID: 12750966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.
    Zhao C; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):637-47. PubMed ID: 20208958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of multicenter overlap integrals with Slater-type orbitals using psi(alpha)-ETOs.
    Guseinov I; Aydin R; Mamedov B
    J Mol Model; 2003 Oct; 9(5):325-8. PubMed ID: 14517610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets.
    Watson MA; Handy NC; Cohen AJ; Helgaker T
    J Chem Phys; 2004 Apr; 120(16):7252-61. PubMed ID: 15267634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.