These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22298496)

  • 1. Rate-controlling isomerizations in fatty acid oxidations by a cytochrome P450 compound I.
    Su Z; Chen X; Horner JH; Newcomb M
    Chemistry; 2012 Feb; 18(9):2472-6. PubMed ID: 22298496
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidation of 10-undecenoic acid by cytochrome P450(BM-3) and its Compound I transient.
    Chen X; Su Z; Horner JH; Newcomb M
    Org Biomol Chem; 2011 Nov; 9(21):7427-33. PubMed ID: 21901220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rates of fatty acid oxidations by P450 compound I are pH dependent.
    Su Z; Horner JH; Newcomb M
    Chembiochem; 2012 Sep; 13(14):2061-4. PubMed ID: 22890798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the ferric hydroperoxy species responsible for sulfur oxidation in cytochrome p450s?
    Cryle MJ; De Voss JJ
    Angew Chem Int Ed Engl; 2006 Dec; 45(48):8221-3. PubMed ID: 17111450
    [No Abstract]   [Full Text] [Related]  

  • 6. Enzyme-substrate complementarity governs access to a cationic reaction manifold in the P450(BM3)-catalysed oxidation of cyclopropyl fatty acids.
    Cryle MJ; Hayes PY; De Voss JJ
    Chemistry; 2012 Dec; 18(50):15994-9. PubMed ID: 23109039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model electrochemical-mass spectrometric studies of the cytochrome P450-catalyzed oxidations of cyclic tertiary allylamines.
    Jurva U; Bissel P; Isin EM; Igarashi K; Kuttab S; Castagnoli N
    J Am Chem Soc; 2005 Sep; 127(35):12368-77. PubMed ID: 16131218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are branched chain fatty acids the natural substrates for P450(BM3)?
    Cryle MJ; Espinoza RD; Smith SJ; Matovic NJ; De Voss JJ
    Chem Commun (Camb); 2006 Jun; (22):2353-5. PubMed ID: 16733577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of key active-site residues in flavocytochrome P450 BM3.
    Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclopropyl fatty acids implicate a radical but not a cation as an intermediate in P450BM3-catalysed hydroxylations.
    Cryle MJ; Stuthe JM; Ortiz de Montellano PR; De Voss JJ
    Chem Commun (Camb); 2004 Mar; (5):512-3. PubMed ID: 14973583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of activation energies for aromatic oxidation by cytochrome P450.
    Rydberg P; Ryde U; Olsen L
    J Phys Chem A; 2008 Dec; 112(50):13058-65. PubMed ID: 18986131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the Regioselective Fatty-Acid Hydroxylation versus Decarboxylation by a Cytochrome P450 Peroxygenase: What Drives the Reaction to Biofuel Production?
    Faponle AS; Quesne MG; de Visser SP
    Chemistry; 2016 Apr; 22(16):5478-83. PubMed ID: 26918676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I.
    Grant JL; Hsieh CH; Makris TM
    J Am Chem Soc; 2015 Apr; 137(15):4940-3. PubMed ID: 25843451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase.
    Neeli R; Girvan HM; Lawrence A; Warren MJ; Leys D; Scrutton NS; Munro AW
    FEBS Lett; 2005 Oct; 579(25):5582-8. PubMed ID: 16214136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids.
    Trudell JR; Bösterling B; Trevor AJ
    Mol Pharmacol; 1982 May; 21(3):710-7. PubMed ID: 7110119
    [No Abstract]   [Full Text] [Related]  

  • 19. Electronic models for cytochrome P450 oxidations.
    Korzekwa KR; Grogan J; DeVito S; Jones JP
    Adv Exp Med Biol; 1996; 387():361-9. PubMed ID: 8794230
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyclopropyl containing fatty acids as mechanistic probes for cytochromes P450.
    Cryle MJ; Ortiz de Montellano PR; De Voss JJ
    J Org Chem; 2005 Apr; 70(7):2455-69. PubMed ID: 15787531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.