These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22298830)

  • 1. Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: fMRI evidence.
    Overath T; Zhang Y; Sanes DH; Poeppel D
    J Neurophysiol; 2012 Apr; 107(8):2042-56. PubMed ID: 22298830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invariance to background noise as a signature of non-primary auditory cortex.
    Kell AJE; McDermott JH
    Nat Commun; 2019 Sep; 10(1):3958. PubMed ID: 31477711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.
    Henry MJ; Obleser J
    PLoS One; 2013; 8(10):e78758. PubMed ID: 24205309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of frequency and location in human subcortical auditory structures.
    Moerel M; De Martino F; Uğurbil K; Yacoub E; Formisano E
    Sci Rep; 2015 Nov; 5():17048. PubMed ID: 26597173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population receptive field estimates of human auditory cortex.
    Thomas JM; Huber E; Stecker GC; Boynton GM; Saenz M; Fine I
    Neuroimage; 2015 Jan; 105():428-39. PubMed ID: 25449742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on 'Rapid acquisition of auditory subcortical steady state responses using multichannel recordings'.
    Lu H; Mehta AH; Bharadwaj HM; Shinn-Cunningham BG; Oxenham AJ
    Clin Neurophysiol; 2020 Aug; 131(8):1833-1834. PubMed ID: 32559638
    [No Abstract]   [Full Text] [Related]  

  • 7. The topography of frequency and time representation in primate auditory cortices.
    Baumann S; Joly O; Rees A; Petkov CI; Sun L; Thiele A; Griffiths TD
    Elife; 2015 Jan; 4():. PubMed ID: 25590651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related hearing loss is associated with alterations in temporal envelope processing in different neural generators along the auditory pathway.
    Farahani ED; Wouters J; van Wieringen A
    Front Neurol; 2022; 13():905017. PubMed ID: 35989932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex.
    Kim SG; Overath T; Sedley W; Kumar S; Teki S; Kikuchi Y; Patterson R; Griffiths TD
    Neuroimage; 2022 Apr; 249():118879. PubMed ID: 34999204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Representation of Time Windows in Primate Auditory Cortex.
    Dheerendra P; Baumann S; Joly O; Balezeau F; Petkov CI; Thiele A; Griffiths TD
    Cereb Cortex; 2022 Aug; 32(16):3568-3580. PubMed ID: 34875029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of human Heschl's gyrus in response to natural speech.
    Khalighinejad B; Patel P; Herrero JL; Bickel S; Mehta AD; Mesgarani N
    Neuroimage; 2021 Jul; 235():118003. PubMed ID: 33789135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Generators Underlying Temporal Envelope Processing Show Altered Responses and Hemispheric Asymmetry Across Age.
    Farahani ED; Wouters J; van Wieringen A
    Front Aging Neurosci; 2020; 12():596551. PubMed ID: 33343335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain mapping of auditory steady-state responses: A broad view of cortical and subcortical sources.
    Farahani ED; Wouters J; van Wieringen A
    Hum Brain Mapp; 2021 Feb; 42(3):780-796. PubMed ID: 33166050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal selectivity declines in the aging human auditory cortex.
    Erb J; Schmitt LM; Obleser J
    Elife; 2020 Jul; 9():. PubMed ID: 32618270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech rhythms and their neural foundations.
    Poeppel D; Assaneo MF
    Nat Rev Neurosci; 2020 Jun; 21(6):322-334. PubMed ID: 32376899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivoxel codes for representing and integrating acoustic features in human cortex.
    Sohoglu E; Kumar S; Chait M; Griffiths TD
    Neuroimage; 2020 Aug; 217():116661. PubMed ID: 32081785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation change detection in human auditory cortex: Evidence for asymmetric, non-linear edge detection.
    Kim SG; Poeppel D; Overath T
    Eur J Neurosci; 2020 Jul; 52(2):2889-2904. PubMed ID: 32080939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Encoding of Speech Sounds in the Superior Temporal Gyrus.
    Yi HG; Leonard MK; Chang EF
    Neuron; 2019 Jun; 102(6):1096-1110. PubMed ID: 31220442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries.
    Flinker A; Doyle WK; Mehta AD; Devinsky O; Poeppel D
    Nat Hum Behav; 2019 Apr; 3(4):393-405. PubMed ID: 30971792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns.
    Santoro R; Moerel M; De Martino F; Valente G; Ugurbil K; Yacoub E; Formisano E
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4799-4804. PubMed ID: 28420788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.