These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22298834)

  • 1. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration.
    Quist BW; Hartmann MJ
    J Neurophysiol; 2012 May; 107(9):2298-312. PubMed ID: 22298834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.
    Quist BW; Seghete V; Huet LA; Murphey TD; Hartmann MJ
    J Neurosci; 2014 Jul; 34(30):9828-44. PubMed ID: 25057187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial distance determination in the rat vibrissal system and the effects of Weber's law.
    Solomon JH; Hartmann MJ
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):3049-57. PubMed ID: 21969686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad.
    Hobbs JA; Towal RB; Hartmann MJ
    PLoS Comput Biol; 2016 Jan; 12(1):e1004109. PubMed ID: 26745501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of a Vibrissa Slipping along a Straight Edge and an Analysis of Frictional Effects during Whisking.
    Huet LA; Hartmann MJ
    IEEE Trans Haptics; 2016; 9(2):158-69. PubMed ID: 26829805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in Young's modulus along the length of a rat vibrissa.
    Quist BW; Faruqi RA; Hartmann MJ
    J Biomech; 2011 Nov; 44(16):2775-81. PubMed ID: 21993474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical variables underlying object localization along the axis of the whisker.
    Pammer L; O'Connor DH; Hires SA; Clack NG; Huber D; Myers EW; Svoboda K
    J Neurosci; 2013 Apr; 33(16):6726-41. PubMed ID: 23595731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking.
    Sachdev RN; Berg RW; Champney G; Kleinfeld D; Ebner FF
    Somatosens Mot Res; 2003; 20(2):163-9. PubMed ID: 12850826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of whisker geometry on contact force produced by vibrissae moving at different velocities.
    Carvell GE; Simons DJ
    J Neurophysiol; 2017 Sep; 118(3):1637-1649. PubMed ID: 28659457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A night in the life of a rat: vibrissal mechanics and tactile exploration.
    Hartmann MJ
    Ann N Y Acad Sci; 2011 Apr; 1225():110-8. PubMed ID: 21534998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional architecture of the mystacial vibrissae.
    Brecht M; Preilowski B; Merzenich MM
    Behav Brain Res; 1997 Mar; 84(1-2):81-97. PubMed ID: 9079775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrissa resonance as a transduction mechanism for tactile encoding.
    Neimark MA; Andermann ML; Hopfield JJ; Moore CI
    J Neurosci; 2003 Jul; 23(16):6499-509. PubMed ID: 12878691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat.
    Ahrens KF; Kleinfeld D
    J Neurophysiol; 2004 Sep; 92(3):1700-7. PubMed ID: 15331651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The search space of the rat during whisking behavior.
    Huet LA; Hartmann MJ
    J Exp Biol; 2014 Sep; 217(Pt 18):3365-76. PubMed ID: 25232200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal.
    Hartmann MJ; Johnson NJ; Towal RB; Assad C
    J Neurosci; 2003 Jul; 23(16):6510-9. PubMed ID: 12878692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Multi-Point Contacts during Object Contour Scanning Using a Biologically-Inspired Tactile Sensor.
    Merker L; Fischer Calderon SJ; Scharff M; Miranda JHA; Behn C
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond cones: an improved model of whisker bending based on measured mechanics and tapering.
    Hires SA; Schuyler A; Sy J; Huang V; Wyche I; Wang X; Golomb D
    J Neurophysiol; 2016 Aug; 116(2):812-24. PubMed ID: 27250911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.
    Towal RB; Quist BW; Gopal V; Solomon JH; Hartmann MJ
    PLoS Comput Biol; 2011 Apr; 7(4):e1001120. PubMed ID: 21490724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.
    Andermann ML; Moore CI
    Brain Res; 2008 Oct; 1235():74-81. PubMed ID: 18625209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.
    Hill DN; Bermejo R; Zeigler HP; Kleinfeld D
    J Neurosci; 2008 Mar; 28(13):3438-55. PubMed ID: 18367610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.