These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22298835)

  • 1. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal integration of gravity in trajectory planning of vertical pointing movements.
    Crevecoeur F; Thonnard JL; Lefèvre P
    J Neurophysiol; 2009 Aug; 102(2):786-96. PubMed ID: 19458149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of aimed arm movements in changed gravity.
    Bock O; Howard IP; Money KE; Arnold KE
    Aviat Space Environ Med; 1992 Nov; 63(11):994-8. PubMed ID: 1445164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity.
    Jamšek M; Kunavar T; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750176. PubMed ID: 34970122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shift in arm-pointing movements during gravity changes produced by aircraft parabolic flight.
    Chen Y; Mori S; Koga K; Ohta Y; Wada Y; Tanaka M
    Biol Sci Space; 1999 Jun; 13(2):77-81. PubMed ID: 11542494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field.
    Bringoux L; Macaluso T; Sainton P; Chomienne L; Buloup F; Mouchnino L; Simoneau M; Blouin J
    Front Physiol; 2020; 11():377. PubMed ID: 32390872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slowing of human arm movements during weightlessness: the role of vision.
    Mechtcheriakov S; Berger M; Molokanova E; Holzmueller G; Wirtenberger W; Lechner-Steinleitner S; De Col C; Kozlovskaya I; Gerstenbrand F
    Eur J Appl Physiol; 2002 Oct; 87(6):576-83. PubMed ID: 12355199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial information prior to movement onset influences kinematics of upward arm pointing movements.
    Rousseau C; Papaxanthis C; Gaveau J; Pozzo T; White O
    J Neurophysiol; 2016 Oct; 116(4):1673-1683. PubMed ID: 27486106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Vercher JL; Bringoux L
    Front Physiol; 2017; 8():821. PubMed ID: 29104544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of microgravity on memorized arm movements.
    Berger M; Lechner-Steinleitner S; Struhal W; Gerstenbrand F; Koslovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P115-7. PubMed ID: 16235440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic synergy adaptation to microgravity during forward trunk movement.
    Vernazza-Martin S; Martin N; Massion J
    J Neurophysiol; 2000 Jan; 83(1):453-64. PubMed ID: 10634887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceived body orientation in microgravity: effects of prior experience and pressure under the feet.
    Carriot J; Bringoux L; Charles C; Mars F; Nougier V; Cian C
    Aviat Space Environ Med; 2004 Sep; 75(9):795-9. PubMed ID: 15460632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual gravity influences arm movement planning.
    Sciutti A; Demougeot L; Berret B; Toma S; Sandini G; Papaxanthis C; Pozzo T
    J Neurophysiol; 2012 Jun; 107(12):3433-45. PubMed ID: 22442569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed-accuracy trade-off of grasping movements during microgravity.
    Jüngling S; Bock O; Girgenrath M
    Aviat Space Environ Med; 2002 May; 73(5):430-5. PubMed ID: 12014601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.