These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 22298847)
1. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Burki F; Okamoto N; Pombert JF; Keeling PJ Proc Biol Sci; 2012 Jun; 279(1736):2246-54. PubMed ID: 22298847 [TBL] [Abstract][Full Text] [Related]
2. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. Okamoto N; Chantangsi C; Horák A; Leander BS; Keeling PJ PLoS One; 2009 Sep; 4(9):e7080. PubMed ID: 19759916 [TBL] [Abstract][Full Text] [Related]
3. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740 [TBL] [Abstract][Full Text] [Related]
4. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Petersen J; Ludewig AK; Michael V; Bunk B; Jarek M; Baurain D; Brinkmann H Genome Biol Evol; 2014 Mar; 6(3):666-84. PubMed ID: 24572015 [TBL] [Abstract][Full Text] [Related]
5. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597 [TBL] [Abstract][Full Text] [Related]
7. Genes functioned in kleptoplastids of Dinophysis are derived from haptophytes rather than from cryptophytes. Hongo Y; Yabuki A; Fujikura K; Nagai S Sci Rep; 2019 Jun; 9(1):9009. PubMed ID: 31227737 [TBL] [Abstract][Full Text] [Related]
8. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Baurain D; Brinkmann H; Petersen J; Rodríguez-Ezpeleta N; Stechmann A; Demoulin V; Roger AJ; Burger G; Lang BF; Philippe H Mol Biol Evol; 2010 Jul; 27(7):1698-709. PubMed ID: 20194427 [TBL] [Abstract][Full Text] [Related]
9. A three-genome ultraconserved element phylogeny of cryptophytes. Greenwold MJ; Merritt K; Richardson TL; Dudycha JL Protist; 2023 Dec; 174(6):125994. PubMed ID: 37935085 [TBL] [Abstract][Full Text] [Related]
10. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Burki F; Inagaki Y; Bråte J; Archibald JM; Keeling PJ; Cavalier-Smith T; Sakaguchi M; Hashimoto T; Horak A; Kumar S; Klaveness D; Jakobsen KS; Pawlowski J; Shalchian-Tabrizi K Genome Biol Evol; 2009 Jul; 1():231-8. PubMed ID: 20333193 [TBL] [Abstract][Full Text] [Related]
11. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. Petersen J; Teich R; Brinkmann H; Cerff R J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987 [TBL] [Abstract][Full Text] [Related]
12. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Frommolt R; Werner S; Paulsen H; Goss R; Wilhelm C; Zauner S; Maier UG; Grossman AR; Bhattacharya D; Lohr M Mol Biol Evol; 2008 Dec; 25(12):2653-67. PubMed ID: 18799712 [TBL] [Abstract][Full Text] [Related]
13. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314 [TBL] [Abstract][Full Text] [Related]
14. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia. Kim JI; Yoon HS; Yi G; Kim HS; Yih W; Shin W PLoS One; 2015; 10(6):e0129284. PubMed ID: 26047475 [TBL] [Abstract][Full Text] [Related]
15. Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Bachvaroff TR; Sanchez Puerta MV; Delwiche CF Mol Biol Evol; 2005 Sep; 22(9):1772-82. PubMed ID: 15917498 [TBL] [Abstract][Full Text] [Related]
16. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Patron NJ; Inagaki Y; Keeling PJ Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896 [TBL] [Abstract][Full Text] [Related]
17. A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin. Pietluch F; Mackiewicz P; Ludwig K; Gagat P Genome Biol Evol; 2024 Sep; 16(9):. PubMed ID: 39240751 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. Daugbjerg N; Andersen RA Mol Biol Evol; 1997 Dec; 14(12):1242-51. PubMed ID: 9402734 [TBL] [Abstract][Full Text] [Related]
19. PHYLOGENOMICS AND SECONDARY PLASTIDS: A LOOK BACK AND A LOOK AHEAD(1). Braun EL; Phillips N J Phycol; 2008 Feb; 44(1):2-6. PubMed ID: 27041031 [TBL] [Abstract][Full Text] [Related]
20. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome. Miller JJ; Delwiche CF Mar Genomics; 2015 Jun; 21():31-42. PubMed ID: 25746767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]