BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22299833)

  • 1. Ca²⁺ signals of astrocytes are modulated by the NAD⁺/NADH redox state.
    Requardt RP; Hirrlinger PG; Wilhelm F; Winkler U; Besser S; Hirrlinger J
    J Neurochem; 2012 Mar; 120(6):1014-25. PubMed ID: 22299833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis.
    Requardt RP; Wilhelm F; Rillich J; Winkler U; Hirrlinger J
    J Neurochem; 2010 Oct; 115(2):483-92. PubMed ID: 20698931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk of Signaling and Metabolism Mediated by the NAD(+)/NADH Redox State in Brain Cells.
    Winkler U; Hirrlinger J
    Neurochem Res; 2015 Dec; 40(12):2394-401. PubMed ID: 25876186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
    Mongeon R; Venkatachalam V; Yellen G
    Antioxid Redox Signal; 2016 Oct; 25(10):553-63. PubMed ID: 26857245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat.
    Fischer W; Appelt K; Grohmann M; Franke H; Nörenberg W; Illes P
    Neuroscience; 2009 Jun; 160(4):767-83. PubMed ID: 19289154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute feedback control of astrocytic glycolysis by lactate.
    Sotelo-Hitschfeld T; Fernández-Moncada I; Barros LF
    Glia; 2012 Apr; 60(4):674-80. PubMed ID: 22290492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A correlation between dexmedetomidine-induced biphasic increases in free cytosolic calcium concentration and energy metabolism in astrocytes.
    Chen Y; Zhao Z; Code WE; Hertz L
    Anesth Analg; 2000 Aug; 91(2):353-7. PubMed ID: 10910847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cytosolic NADH/NAD(+) levels on sarcoplasmic reticulum Ca(2+) release in permeabilized rat ventricular myocytes.
    Zima AV; Copello JA; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):727-41. PubMed ID: 14724208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional roles of NAD⁺ and NADH in astrocytes.
    Wilhelm F; Hirrlinger J
    Neurochem Res; 2012 Nov; 37(11):2317-25. PubMed ID: 22476700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes.
    Fu W; Ruangkittisakul A; MacTavish D; Baker GB; Ballanyi K; Jhamandas JH
    Neuroscience; 2013 Oct; 250():520-35. PubMed ID: 23876319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone.
    Pancani T; Anderson KL; Porter NM; Thibault O
    Cell Calcium; 2011 Dec; 50(6):548-58. PubMed ID: 21978418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of glycolytic and mitochondrial energy supply for loading of Ca(2+) stores and InsP(3)-mediated Ca(2+) signaling in rat hippocampus astrocytes.
    Kahlert S; Reiser G
    J Neurosci Res; 2000 Aug; 61(4):409-20. PubMed ID: 10931527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.
    Tjalkens RB; Zoran MJ; Mohl B; Barhoumi R
    Brain Res; 2006 Oct; 1113(1):210-9. PubMed ID: 16934782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coenzyme Q(1) depletes NAD(P)H and impairs recycling of ascorbate in astrocytes.
    Dragan M; Dixon SJ; Jaworski E; Chan TS; O'brien PJ; Wilson JX
    Brain Res; 2006 Mar; 1078(1):9-18. PubMed ID: 16499885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the neurokinin-1 receptor in rat spinal astrocytes induces Ca2+ release from IP3-sensitive Ca2+ stores and extracellular Ca2+ influx through TRPC3.
    Miyano K; Morioka N; Sugimoto T; Shiraishi S; Uezono Y; Nakata Y
    Neurochem Int; 2010 Dec; 57(8):923-34. PubMed ID: 20933035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro.
    Garofalo O; Cox DW; Bachelard HS
    J Neurochem; 1988 Jul; 51(1):172-6. PubMed ID: 3379400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAD induces astrocyte calcium flux and cell death by ART2 and P2X7 pathway.
    Wang J; Yang J; Liu P; Bi X; Li C; Zhu K
    Am J Pathol; 2012 Sep; 181(3):746-52. PubMed ID: 22781627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.