These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22299962)

  • 1. High-speed force load in force measurement in liquid using scanning probe microscope.
    Zhang Y; Zou Q
    Rev Sci Instrum; 2012 Jan; 83(1):013707. PubMed ID: 22299962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging.
    Yan Y; Wu Y; Zou Q; Su C
    Rev Sci Instrum; 2008 Jul; 79(7):073704. PubMed ID: 18681705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A control approach to high-speed probe-based nanofabrication.
    Yan Y; Zou Q; Lin Z
    Nanotechnology; 2009 Apr; 20(17):175301. PubMed ID: 19420589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling scanning probe microscope lateral dynamics using the probe-surface interaction signal.
    Okorafor M; Clayton GM
    Rev Sci Instrum; 2011 Mar; 82(3):033707. PubMed ID: 21456751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative control approach to high-speed force-distance curve measurement using AFM: time-dependent response of PDMS example.
    Kim KS; Lin Z; Shrotriya P; Sundararajan S; Zou Q
    Ultramicroscopy; 2008 Aug; 108(9):911-20. PubMed ID: 18467033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative image-based modeling and control for higher scanning probe microscope performance.
    Clayton GM; Devasia S
    Rev Sci Instrum; 2007 Aug; 78(8):083704. PubMed ID: 17764326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.
    Wu Y; Shi J; Su C; Zou Q
    Rev Sci Instrum; 2009 Apr; 80(4):043709. PubMed ID: 19405668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration.
    Wang Z; Tan J; Zou Q; Jiang W
    Rev Sci Instrum; 2013 Nov; 84(11):113704. PubMed ID: 24289401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge drives for scanning probe microscope positioning stages.
    Fleming AJ; Leang KK
    Ultramicroscopy; 2008 Nov; 108(12):1551-7. PubMed ID: 18586402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whispering-gallery acoustic sensing: characterization of mesoscopic films and scanning probe microscopy applications.
    La Rosa AH; Li N; Fernandez R; Wang X; Nordstrom R; Padigi SK
    Rev Sci Instrum; 2011 Sep; 82(9):093704. PubMed ID: 21974591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive-scanning, near-minimum-deformation atomic force microscope imaging of soft sample in liquid: Live mammalian cell example.
    Ren J; Zou Q
    Ultramicroscopy; 2018 Mar; 186():150-157. PubMed ID: 29335224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEMS-based high speed scanning probe microscopy.
    Disseldorp EC; Tabak FC; Katan AJ; Hesselberth MB; Oosterkamp TH; Frenken JW; van Spengen WM
    Rev Sci Instrum; 2010 Apr; 81(4):043702. PubMed ID: 20441340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to correct hysteresis of scanning probe microscope images based on a sinusoidal model.
    Zhang L; Chen X; Huang J; Li H; Chen L; Huang Q
    Rev Sci Instrum; 2019 Feb; 90(2):023704. PubMed ID: 30831739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A moving window correlation method to reduce the distortion of scanning probe microscope images.
    Chu W; Fu J; Dixson R; Orji G; Vorburger T
    Rev Sci Instrum; 2009 Jul; 80(7):073709. PubMed ID: 19655958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, analysis and control of a high-speed laser-free atomic force microscope.
    Bashash S; Saeidpourazar R; Jalili N
    Rev Sci Instrum; 2010 Feb; 81(2):023707. PubMed ID: 20192502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making a commercial atomic force microscope more accurate and faster using positive position feedback control.
    Mahmood IA; Moheimani SO
    Rev Sci Instrum; 2009 Jun; 80(6):063705. PubMed ID: 19566208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues.
    Yong YK; Moheimani SO; Kenton BJ; Leang KK
    Rev Sci Instrum; 2012 Dec; 83(12):121101. PubMed ID: 23277965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.
    Ren J; Zou Q
    Rev Sci Instrum; 2014 Jul; 85(7):073706. PubMed ID: 25085145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection.
    Sadeghian H; Herfst R; Winters J; Crowcombe W; Kramer G; van den Dool T; van Es MH
    Rev Sci Instrum; 2015 Nov; 86(11):113706. PubMed ID: 26628143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.